Skip to main content
Log in

Evolution of Triticum aethiopicum Jakubz. from the Position of Chromosome Analysis

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Cytogenetic analysis was conducted on a set of 67 Ethiopian wheat accessions collected by the expedition of N.I. Vavilov in 1927 and 85 years later by the Joint Ethiopian–Russian Biological Expedition (JERBE) in 2012 in the same sites of Ethiopia. The preservation of the polymorphism system of heterochromatic chromosome sites upon the change in the Ethiopian wheat population structure over the past period owing to a frequency shift of some specific chromosome variants and an increase in the proportion of genotypes carrying marker rearrangements was demonstrated. The unevenness of the geographical distribution of the 2A:4B translocation and of the 5A inversion was identified, and it was demonstrated that wheat accessions from Eritrea were cytogenetically the most isolated from the population from the central regions of Ethiopia. A low level of the Ethiopian wheat polymorphism was found along with the prevalence of the same chromosome rearrangement variants, which was indicative of monophyletic origin of the species. It was suggested that Triticum aethiopicum could have diverged from Ethiopian emmer as a result of hybridization with other wheat species, while subsequent evolution of these species occurred independently. Evidence for the participation of Ethiopian wheat in the formation of the gene pool of the unique Moroccan group of T. dicoccum was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Kul’turnaya flora SSSR (Cultural Flora of the Soviet Union), vol. 1: Pshenitsa (Wheat), Leningrad: Kolos, 1979.

    Google Scholar 

  2. Vavilov, N.I., Fortunatova, O.K., Yakubtsiner, M.M., et al., Wheats of Abyssinia and their position in the general wheat system (to the knowledge of the 28-chromosome group of cultivated wheat), in Vavilov, N.I., Izbrannye trudy v pyati tomakh: problemy proiskhozhdeniya, geografii, genetiki, selektsii rastenii, rastenievodstva i agronomii (Selected Writings in Five Volumes: Origin, Geography, Genetics, Breeding of Plants, Plant Industry, and Agronomy), Moscow: Nauka, 1962, vol. 3, pp. 225–369.

    Google Scholar 

  3. Goncharov, N.P., Mitina, R.L., and Anfilova, N.A., Inheritance of awnlessness in tetraploid wheat species, Russ. J. Genet., 2003, vol. 39, no. 4, pp. 463–466. doi 10.1023/A:1023326202320

    Article  CAS  Google Scholar 

  4. Goncharov, N.P., Comparative genetic study of tetraploid forms of common wheat without D genome, Genetika, 1997, vol. 33, no. 5, pp. 660–552.

    Google Scholar 

  5. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat, The 12th Intern. Weat Genetics Symp., September 8–13, 2013, Japan: Yokohama, 2013. http://www.shigen. nig.ac.jp/wheat/komugi/genes/down-load.jsp.

    Google Scholar 

  6. Goncharov, N.P. and Konovalov, A.A., Inheritance of glucose phosphate isomerase, awnedness, hairy glume, and growth habit in Aegilops speltoides and Aegilops aucheri, Genetika, 1996, vol. 32, no. 5, pp. 656–662.

    Google Scholar 

  7. Watkins, A.E., The wheat species: a critique, J. Genet., 1930, vol. 23, pp. 173–263. doi 10.1007/BF03052607

    Article  Google Scholar 

  8. Al Khanjari, S., Filatenko, A.A., Hammer, K., and Buerkert, A., Morphological spike diversity of Omani wheat, Genet. Res. Crop Evol., 2008, vol. 55, no. 8, pp. 1185–1195. doi 10.1007/s10722-008-9319-9

    Article  Google Scholar 

  9. Gowayed, S., Egyptian Wheat, Ph.D. Thesis, Göttingen: University of Kassel, 2009.

    Google Scholar 

  10. Eticha, F., Belay, G., and Bekele, E., Species diversity in wheat landrace populations from two regions of Ethiopia, Genet. Res. Crop Evol., 2006, vol. 53, no. 6, pp. 387–393. doi 10.1007/s10722-004-6095-z

    Article  Google Scholar 

  11. Zeven, A.C., Wheats with purple and blue grains: a review, Euphytica, 1991, vol. 56, no. 3, pp. 243–258. doi 10.1007/BF00042371

    Article  Google Scholar 

  12. Belay, G., Tesemma, T., Bechere, E., and Mitiku, D., Natural and human selection for purple-grain tetraploid wheats in the Ethiopian highlands, Genet. Res. Crop Evol., 1995, vol. 42, no. 4, pp. 387–391. doi 10.1007/bf02432143

    Article  Google Scholar 

  13. Tsegaye, B. and Berg, T., Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia, Genet. Res. Crop Evol., 2007, vol. 54, no. 4, pp. 715–726. doi 10.1007/s10722-006-0016-2

    Article  Google Scholar 

  14. Teklu, Y. and Hammer, K., Farmers’ perception and genetic erosion of tetraploid wheats landraces in Ethiopia, Genet. Res. Crop Evol., 2006, vol. 53, no. 6, pp. 1099–1113. doi 10.1007/s10722-005-1145-8

    Article  Google Scholar 

  15. Feldman, M., Origin of cultivated wheat, The World Wheat Book: A History of Wheat Breeding, Londres: Tec and Doc, 2001, pp. 3–56.

    Google Scholar 

  16. Orlov, A.A., Geographical center of origin and the area of durum wheat cultivation, Tr. Prikl. Bot. Sel., 1922–1923, vol. 13, no. 1, pp. 369–459.

    Google Scholar 

  17. Vavilov, N.I., Proiskhozhdenie i geografiya kul’turnykh rastenii (Origin and Geography of Cultivated Plants), Leningrad: Nauka, 1987.

    Google Scholar 

  18. Letta, T., Gezu, G., Kudryavtsev, A., et al., Genetic diversity of Ethiopian durum wheat varieties based on gliadin alleles [Triticum durum Desf.], J. Genet. Breed., 2005, vol. 59, pp. 277–284.

    CAS  Google Scholar 

  19. Teklu, Y., Hammer, K., and Röder, M.S., Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): analysis of genetic diversity and differentiation, Genet. Res. Crop Evol., 2007, vol. 54, no. 3, pp. 543–554. doi 10.1007/s10722-006-0011-7

    Article  CAS  Google Scholar 

  20. Teklu, Y., Hammer, K., Huang, X.Q., and Röder, M.S., Analysis of microsatellite diversity in Ethiopian tetraploid wheat landraces, Genet. Res. Crop Evol., 2006, vol. 53, no. 6, pp. 1115–1126. doi 10.1007/s10722-005-1146-7

    Article  CAS  Google Scholar 

  21. Kawahara, T. and Taketa, S., Fixation of translocation 2A–4B infers the monophyletic origin of Ethiopian tetraploid wheat, Theor. Appl. Genet., 2000, vol. 101, nos. 5–6, pp. 705–710. doi 10.1007/s001220051534

    Article  Google Scholar 

  22. Belay, G. and Merker, A., Cytogenetic studies in Ethiopian landraces of tetraploid wheat (Triticum turgidum L.): 2. Spontaneous chromosome translocations and fertility, Hereditas, 1997, vol. 126, no. 1, pp. 35–43. doi 10.1111/j.1601-5223.1997.00035.x

    Article  Google Scholar 

  23. Belay, G. and Merker, A., Cytogenetic analysis of a spontaneous 5B/6B translocation in tetraploid wheat landraces from Ethiopia, and implications for breeding, Plant Breed., 1998, vol. 117, no. 6, pp. 537–542. doi 10.1111/j.1439-0523.1998.tb02203.x

    Article  Google Scholar 

  24. Belay, G. and Merker, A., C-band polymorphism and chromosomal rearrangements in tetraploid wheat (Triticum turgidum L.) landraces from Ethiopia, Wheat Inf. Serv., 1999, vol. 88, pp. 6–14.

    Google Scholar 

  25. Faris, H., Merker, A., Harjit-Singh, et al., Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia, Genet. Res. Crop Evol., 2006, vol. 53, no. 6, pp. 1089–1098. doi 10.1007/s10722-005-9776-3

    Article  Google Scholar 

  26. Belay, G., Tesemma, T., Becker, H.C., and Merker, A., Variation and interrelationships of agronomic traits in Ethiopian tetraploid wheat landraces, Euphytica, 1993, vol. 71, no. 3, pp. 181–188. doi 10.1007/BF00040407

    Article  Google Scholar 

  27. Gordeeva, E.I., Genetic regulation of purple color of the soft wheat (Triticum aesticum L.) pericarp, Cand. Sci. (Biol.) Dissertation, Novosibirsk: Instituty of Citology and Genetis, Siberian Branch of Russian Akademy of Science, 2015.

    Google Scholar 

  28. Zhukovsky, P.M., Mirovoi genofond rastenii dlya selektsii (mega-gen tsentry i endemichnye mikro-gen tsentry) (Mega-Gene Centers and Endemic Micro-Gene Centers: World Gene Pool of Plants for Breeding), Leningrad: Nauka, 1970.

    Google Scholar 

  29. Badaeva, E.D., Badaev, N.S., Gill, B.S., and Filatenko, A.A., Intraspecific karyotype divergence in Triticum araraticum (Poaceae), Plant Syst. Evol., 1994, vol. 192, no. 1, pp. 117–145. doi 10.1007/BF00985912

    Article  Google Scholar 

  30. Gill, B.S., Friebe, B., and Endo, T.R., Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum), Genome, 1991, vol. 34, no. 5, pp. 830–839. https://doi.org/10.1139/g95-030.

    Article  Google Scholar 

  31. Badaeva, E.D., Keilwagen, J., Knüpffer, H., et al., Chromosomal passports provide new insights into diffusion of emmer wheat, PLoS One, 2015, vol. 10. e0128556. doi 10.1371/journal.pone.0128556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Badaeva, E.D., Dedkova, O.S., Zelenin, A.V., and Pukhalskiy, V.A., Chromosomal changes over the course of polyploid wheat evolution and domestication, in Wheat Genetics: From Genome to Field (Proc. 12th Int. Wheat Genet. Symp.), Tokyo: Springer-Verlag, 2015, pp. 83–89.

    Google Scholar 

  33. Dedkova, O.S., Badaeva, E.D., Mitrofanova, O.P., et al., Analysis of intraspecific diversity of cultivated emmerTriticum dicoccum (Schrank.) Schuebl using C-banding technique, Russ. J. Genet., 2007, vol. 43, no. 11, pp. 1271–1285. doi 10.1134/S1022795407110105

    Article  CAS  Google Scholar 

  34. Khlestkina, E.K., Genes determining the coloration of different organs in wheat, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 1, pp. 54–65.

    Article  Google Scholar 

  35. Lachman, J., Martinek, P., Kotíková, Z., et al., Genetics and chemistry of pigments in wheat grain–a review, J. Cereal Sci., 2017, vol. 74, pp. 145–154. doi 10.1016/j.jcs.2017.02.007

    Article  CAS  Google Scholar 

  36. Takenaka, S., Mori, N., and Kawahara, T., Genetic variation in domesticated emmer wheat (Triticum turgidum L.) in and around Abyssinian Highlands, Breed. Sci., 2010, vol. 60, no. 3, pp. 212–227.

    Article  CAS  Google Scholar 

  37. Pomortsev, A.A., Hordein polymorphism in Ethiopian barley, Russ. J. Genet., 2001, vol. 37. no. 10, pp. 1371–1382. doi 10.1023/A:1012304605452

    Article  CAS  Google Scholar 

  38. Badaeva, E.D., Dedkova, O.S., Gay, G., et al., Chromosomal rearrangements in wheat: their types and distribution, Genome, 2007, vol. 50, no. 10, pp. 907–926. doi 10.1139/G07-072

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Badaeva.

Additional information

Dedicated to the memory of the outstanding Russian geneticist, Academician Nikolai Ivanovich Vavilov in the honor of the 90th anniversary of his expedition to Ethiopia and the 130th anniversary of his birth.

Original Russian Text © E.D. Badaeva, A.A. Shishkina, N.P. Goncharov, E.V. Zuev, N.S. Lysenko, O.P. Mitrofanova, A.Yu. Dragovich, A.M. Kudriavtsev, 2018, published in Genetika, 2018, Vol. 54, No. 6, pp. 613–628.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badaeva, E.D., Shishkina, A.A., Goncharov, N.P. et al. Evolution of Triticum aethiopicum Jakubz. from the Position of Chromosome Analysis. Russ J Genet 54, 629–642 (2018). https://doi.org/10.1134/S1022795418060029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418060029

Keywords

Navigation