Russian Journal of Genetics

, Volume 54, Issue 3, pp 267–283 | Cite as

Genetic Transformation of Wheat: State of the Art

  • A. K. Gaponenko
  • Ya. V. Mishutkina
  • A. A. Timoshenko
  • O. A. Shulga
Reviews and Theoretical Articles

Abstract

The review provides the latest achievements in the field of wheat transformation and analysis of the factors affecting transformation efficiency. A comparative analysis of the most commonly used methods of wheat transformation, i.e., direct gene transfer by biolistic transformation and by Agrobacterium tumefaciens in vitro and in planta, is carried out. The stages and components of methods that affect transformation efficiency are examined in detail. Since the first successful biolistic transformation of wheat in 1992 and Agrobacterium- mediated transformation in 1997, 25 to 20 years have passed. Since then, all physical and biological parameters for the heterologous DNA delivery to the wheat genome and regeneration of plant transformants in vitro have been investigated and described in detail. Information on the influence of key parameters and factors on increasing transformation efficiency of highly productive wheat varieties is presented.

Keywords

wheat transgenic technologies genetic transformation biolistic agro-transformation Agrobacterium tumefaciens 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vandenbroucke, K. and Metzlaff, M., Abiotic stress tolerant crops: genes, pathways and bottlenecks, in Sustainable Food Production, New York: Springer-Verlag, 2013, pp. 1–17. doi 10.1007/978-1-4419-0851-3Google Scholar
  2. 2.
    Declaration, M., Action plan on food price volatility and agriculture, Meeting of G20 Agriculture Ministers, Paris, 2011, pp. 22–23.Google Scholar
  3. 3.
    Upadhyay, S.K., Kumar, J., Alok, A., and Tuli, R., RNA-guided genome editing for target gene mutations in wheat, Genes Genomes Genet., 2013, vol. 3, no. 12, pp. 2233–2238. doi 10.1534/g3.113.008847Google Scholar
  4. 4.
    Wang, Y., Cheng, X., Shan, Q., et al., Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol., 2014, vol. 32, no. 9, pp. 947–951. doi 10.1038/nbt.2969CrossRefPubMedGoogle Scholar
  5. 5.
    Khlestkina, E.K., The CRISPR/Cas9 system for the plant genome editing, in Redaktirovanie genov i genomov (Gene and Genome Editing), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2016, pp. 171–188. ISBN 978-5-7692-1489-9Google Scholar
  6. 6.
    Skoog, F. and Miller, C., Chemical regulation of growth and organ formation in plant tissues cultured in vitro, Symp. Soc. Exp., 1957, vol. 11, pp. 118–131.Google Scholar
  7. 7.
    Wernicke, W. and Brettell, R., Somatic embryogenesis from Sorghum bicolor leaves, Nature, 1980, vol. 287, pp. 138–139. doi 10.1038/287138a0CrossRefGoogle Scholar
  8. 8.
    Shimada, T., Plant regeneration from the callus induced from wheat embryos, Jpn. J. Genet., 1978, vol. 53, no. 5, pp. 371–374. doi 10.1266/jjg.53.371CrossRefGoogle Scholar
  9. 9.
    Wernicke, W. and Milkovits, L., The regeneration potential or wheat shoot meristems in the presence and absence of 2,4-dichlorophenoxyacetic acid, Protoplasma, 1986, vol. 131, no. 2, pp. 131–141. doi 10.1007/BF01285035CrossRefGoogle Scholar
  10. 10.
    Wemicke, W., Gorst, J., and Milkovits, L., The ambiguous role of 2,4-dichlorophenoxyacetic acid in wheat tissue culture, Physiol. Plant., 1986, vol. 68, no. 4, pp. 597–602. doi 10.1111/j.1399-3054.1986.tb03402.xCrossRefGoogle Scholar
  11. 11.
    Vasil, I.K., Scowcraft, N.R., and Frey, K.J., Somatic embryogenesis and plant regeneration in cereals and grasses, in Variability in Plant Regenerated from Tissue Culture, Earle, E.D. and Demarly, Y., Eds., New York: Academic, 1982, vols. 11–16, pp. 179–203.Google Scholar
  12. 12.
    Ahloowalia, B.S., Plant regeneration from callus culture in wheat, Crop Sci., 1982, vol. 22, no. 2, pp. 405–410. doi 0.2135/cropsci1982.0011183X002200020047xCrossRefGoogle Scholar
  13. 13.
    Vasil, I.K., Vasil, V., Chin-Yi, L., et al., Somatic embryogenesis in cereals and grasses, in Variability in Plant Regenerated from Tissue Culture, Earle, E.D. and Demarly, Y., Eds., New York: Academic, 1982, pp. 3–21.Google Scholar
  14. 14.
    Sears, R.G. and Deckard, E.L., Tissue culture variability in wheat: callus induction and plant regeneration, Crop Sci., 1982, vol. 22, no. 3, pp. 546–550. doi 10.2135/cropsci1982.0011183X002200030027xCrossRefGoogle Scholar
  15. 15.
    Ozias-Akins, P. and Vasil, I.K., Callus induction and growth from the mature embryo of T. aestivum (wheat) embryos, Protoplasma, 1983, vol. 115, nos. 2–3, pp. 104–113. doi 10.1007/BF01279802CrossRefGoogle Scholar
  16. 16.
    Sukhanov, V.M. and Papazyan, N.D., Conditions for obtaining callus and regenerants in the culture of immature wheat germs, in Apomiksis i tsitoembriologiya rastenii (Apomixis and Cytoembryology of Plants), Saratov: Saratov Univ., 1983, no. 5, pp. 124–128.Google Scholar
  17. 17.
    Maddock, S.E., Lancaster, V.A., Riscott, R., and Franklin, J., Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum), J. Exp. Bot., 1983, vol. 34, no. 7, pp. 915–926. doi 10.1093/jxb/34.7.915CrossRefGoogle Scholar
  18. 18.
    Gaponenko, A.K., Muntyan, M.A., Malikova, N.I., et al., Regeneration of plants of different wheat, Triticum aestivum L., genotypes, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 5, pp. 1231–1235.Google Scholar
  19. 19.
    Gaponenko, A.K., Malikova, N.I., Okhrimenko, G.N., et al., Production of somaclonal lines in cereals (Triticum aestivum L. and Hordeum vulgare L.), Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 6. pp. 1471–1475.Google Scholar
  20. 20.
    Bannikova, V.P., Sidorova, N.V., Kolyuchaya, G.S., et al., Regeneration of plants from callus tissues of immature hybrid wheat germs, Dokl. Akad. Nauk Ukr. SSR, Ser. B, 1985, vol. 3, pp. 62–64.Google Scholar
  21. 21.
    Butenko, R.G., Dzhardemaliev, Zh.K., and Gavrilova, N.F., Regeneration of plants from callus tissues obtained from different organs of winter wheat, Fiziol. Rast., 1986, vol. 33, no. 5, pp. 837–842.Google Scholar
  22. 22.
    Carman, J.G., Jefferson, N.E., and Campbell, W.F., Induction of embryogenic Triticum aestivum L. calli: 1. Quantification of genotype and culture medium effects, Plant Cell Tissue Organ Cult., 1987, vol. 10, no. 2, pp. 101–113. doi 10.1007/BF00035908CrossRefGoogle Scholar
  23. 23.
    He, D., Yang, Y.M., Dahler, G., et al., A comparison of epiblast callus and scutellum callus induction in wheat: the effect of embryo age, genotype and medium, Plant Sci., 1988, vol. 57, no. 3, pp. 225–233.CrossRefGoogle Scholar
  24. 24.
    Danilova, S.A., The technologies for genetic transformation of cereals, Russ. J. Plant Physiol., 2007, vol. 54, no. 5, pp. 569–581.CrossRefGoogle Scholar
  25. 25.
    Lutova, L.A., Bondarenko, L.V., Buzovkina, I.S., et al., Influence of plant genotype on regeneration processes, Russ. J. Genet., 1994, vol. 30, no. 8, pp. 1065–1074.Google Scholar
  26. 26.
    Varshney, A. and Altpeter, F., Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.), Mol. Breed., 2002, vol. 8, no. 4, pp. 295–309. doi 10.1023/A:1015240901016CrossRefGoogle Scholar
  27. 27.
    Filippov, M., The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat, Plant Cell Tissue Organ Cult., 2006, vol. 84, no. 2, pp. 192–201. doi 10.1007/s11240-005-9026-6CrossRefGoogle Scholar
  28. 28.
    Hunsinger, H. and Schauz, K., The influence of dicamba on somatic embryogenesis and frequency of plant regeneration from cultured immature embryos of wheat (Triticum aestivum L.), Plant Breed., 1987, vol. 98, no. 2, pp. 119–123. doi 10.1111/j.1439- 0523.1987.tb01103.xCrossRefGoogle Scholar
  29. 29.
    Przetakiewicz, A., Orczyk, W., and Nadolska-Orczyk, A., The effect of auxin on plant regeneration of wheat, barley and triticale, Plant Cell Tissue Organ Cult., 2003. vol. 73, pp. 245–256.CrossRefGoogle Scholar
  30. 30.
    Mendoza, M.G. and Kaeppler, H.F., Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.), In Vitro Cell. Dev. Biol. Plant, 2002, vol. 38, pp. 39–45.CrossRefGoogle Scholar
  31. 31.
    Özgen, M., Türet, M., Altìnok, S., et al., Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes, Plant Cell Rep., 1998, vol. 18, no. 3, pp. 331–335. doi 10.1007/s002990050581Google Scholar
  32. 32.
    Miroshnichenko, M., Filippov, S., and Dolgov, S.V., Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat, Aust. J. Crop Sci., 2009, vol. 3, no. 2, p. 83.Google Scholar
  33. 33.
    Bińka, A., Orczyk, W., and Nadolska-Orczyk, A., The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittmack): role of the binary vector system and selection cassettes, J. Appl. Genet., 2012, vol. 53, no. 1, pp. 1–8. doi 10.1007/s13353-011-0064-yCrossRefPubMedGoogle Scholar
  34. 34.
    Wang, Y., Transgenic wheat plants derived from Agrobacterium- mediated transformation of mature embryo tissues, Cereal Res. Commun., 2009, vol. 37, no. 1, pp. 1–12. doi 10.1556/CRC.37.2009.1.1CrossRefGoogle Scholar
  35. 35.
    Mamrutha, H.M., Rajkumar, K., Venkatesh, P., et al., Optimization of auxin type and concentration for callus induction in mature embryos of Indian wheat varieties, Crop Improv., 2012, pp. 217–218.Google Scholar
  36. 36.
    Vishnudasan, D., Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene, Transgenic Res., 2005, vol. 14, no. 5, pp. 665–675. doi 10.1007/s11248-005-5696-4CrossRefPubMedGoogle Scholar
  37. 37.
    Rashid, H., Effect of bacterial culture density and acetosyringone concentration on Agrobacterium mediated transformation in wheat, Pak. J. Bot., 2010, vol. 42, no. 6, pp. 4183–4189.Google Scholar
  38. 38.
    Miroshnichenko, D.N., Poroshin, G.N., and Dolgov, S.V., Genetic transformation of wheat using mature seed tissues, Appl. Biochem. Microbiol., 2011, vol. 47, no. 8, pp. 767–775.CrossRefGoogle Scholar
  39. 39.
    Saeed, B., Development of regeneration and transformation protocol for local Sudan’s wheat (Triticum aestivum L.) cultivars, Global Adv. Res. J. Biotechnol., 2015, vol. 4, no. 1, pp. 030–040.Google Scholar
  40. 40.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497. doi 10.1111/j.1399-3054.1962.tb08052.xCrossRefGoogle Scholar
  41. 41.
    Barton, K.A., Binns, A.N., Matzke, A.J.M., et al., Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny, Cell, 1983, vol. 32, no. 4, pp. 1033–1043. doi 10.1016/0092- 8674(83)90288-XCrossRefPubMedGoogle Scholar
  42. 42.
    Shaw, C.H., Leemans, J., Shaw, C.H., et al., A general method for the transfer of cloned genes to plant cells, Gene, 1983, vol. 23, no. 3, pp. 315–330. doi 10.1016/0378-1119(83)90021-5CrossRefPubMedGoogle Scholar
  43. 43.
    De Block, M., Herrera-Estrella, L., Van Montague, M., et al., Expression of foreign genes in regenerated plants and in their progeny, EMBO J., 1984, vol. 3, no. 8, pp. 1681–1689.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Fraley, R.T., Horsch, R.B., Matzke, A., et al., In vitro transformation of petunia cells by an improved method for co-cultivation with A. tumefaciens stains, Plant Mol. Biol., 1984, vol. 3, pp. 371–378.CrossRefPubMedGoogle Scholar
  45. 45.
    Horsch, R.B., Fraley, R.T., Rogers, S.G., et al., Inheritance of functional foreign genes in plants, Science, 1984, vol. 223, pp. 496–498. doi 10.1126/science. 223.4635.496CrossRefPubMedGoogle Scholar
  46. 46.
    Potrykus, I., Gene transfer to cereals: as assessment, Biotechnology, 1990, vol. 8, pp. 535–542.Google Scholar
  47. 47.
    Sanford, J.C., Klein, T.M., Wolf, E.D., et al., Delivery of substances into cells and tissues using a particle bombardment process, J. Part. Sci. Technol., 1987, vol. 5, pp. 27–37. doi 10.1080/02726358708904533CrossRefGoogle Scholar
  48. 48.
    Lein, T.M., Gradzie, T., Fromm, M.E., et al., Factors influencing gene delivery into Zea mays cells by high–velocity microprojectiles, Nat. Biotechnol., 1988, vol. 6, no. 5, pp. 559–563. doi 10.1038/nbt0588-559CrossRefGoogle Scholar
  49. 49.
    Finer, J.J., Vain, P., Jones, M.W., et al., Development of the particle inflow gun for DNA delivery to the plant cells, Plant Cell Rep., 1992, vol. 11, pp. 323–328. doi 10.1007/BF00233358CrossRefPubMedGoogle Scholar
  50. 50.
    Sautter, C., Waldner, H., Neuhaus-Url, G., et al., Micro-targeting: high efficiency gene transfer using a novel approach for the acceleration of microprojectiles, BioTechnology, 1991, vol. 9, pp. 1080–1085. doi 10.1038/nbt1991-1080CrossRefPubMedGoogle Scholar
  51. 51.
    Christou, P., Ford, T.L., and Kofron, M., Production of transgenic rice (Oryza sativa L.) plants from agro nomically important Indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos, Nat. Biotechnol., 1991, vol. 9, no. 10, pp. 957–962. doi 10.1038/nbt1091-957CrossRefGoogle Scholar
  52. 52.
    Vasil, V., Castillo, A.M., Fromm, M.E., et al., Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus, Nat. Biotechnol., 1992, vol. 10, no. 6, pp. 667–674. doi 10.1038/nbt0692-667CrossRefGoogle Scholar
  53. 53.
    Vasil, V., Srivastava, V., Castillo, A.M., et al., Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos, Nat. Biotechnol., 1993, vol. 11, no. 12, pp. 1553–1558. doi 10.1038/nbt1293-1553CrossRefGoogle Scholar
  54. 54.
    Weeks, J.T., Anderson, O.D., and Blechl, A.E., Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum), Plant Physiol., 1993, vol. 102, no. 4, pp. 1077–1084. doi 10.1104/pp.102.4.1077CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nehra, N.S., Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs, Plant J., 1994, vol. 5, no. 2, pp. 285–297. doi 10.1046/j.1365-313X.1994.05020285.xCrossRefGoogle Scholar
  56. 56.
    Altpeter, F., Integration and expression of the highmolecular-weight glutenin subunit 1Ax1 gene into wheat, Nat. Biotechnol., 1996, vol. 14, no. 9, pp. 1155–1159. doi 10.1038/nbt0996-1155CrossRefPubMedGoogle Scholar
  57. 57.
    Barro, F., Transformation of wheat with high molecular weight subunit genes results in improved functional properties, Nat. Biotechnol., 1997, vol. 15, no. 12, pp. 1295–1299. doi 10.1038/nbt1197-1295CrossRefPubMedGoogle Scholar
  58. 58.
    Pellegrineschi, A., Reynolds, M., Yamaguchi-Shinozaki, K., et al., Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions, Genome, 2004, vol. 47, pp. 493–500. doi 10.1139/g03-140CrossRefPubMedGoogle Scholar
  59. 59.
    Shiqing, G.A., Improvement of wheat drought and salt tolerance by expression of a stress-inducible transcription factor Gm DREB of soybean (Glycine max), Chin. Sci. Bull., 2005, vol. 50, no. 23, pp. 2714–2723. doi 10.1007/BF02899641CrossRefGoogle Scholar
  60. 60.
    Kapoor, V. and Tandon, P., Evergreen wheat: using genetic modification to generate a perfect blend of all seasonal varieties: a review, J. Agric. Vet. Sci. (IOSRJAVS), 2012, vol. 1, no. 3, p. 17.Google Scholar
  61. 61.
    Information System for Biotechnology. http://www. isb.vt.edu/search-release-data.aspx.Google Scholar
  62. 62.
    William, H., Optimization of biolistic transformation using the Helium-Driven PDS-1000, Bio-Rad Bull., 1992, vol. 1688, pp. 1–7.Google Scholar
  63. 63.
    Kasirajan, L., Boomiraj, K., and Bansal, K.C., Optimization of genetic transformation protocol mediated by biolistic method in some elite genotypes of wheat (Triticum aestivum L.), Afr. J. Biotechnol., 2013, vol. 12, no. 6, pp. 531–538. doi 10.5897/AJB12.2785Google Scholar
  64. 64.
    Fadeev, V.S., Blinkova, O.V., and Gaponenko, A.K., Optimization of biological and physical parameters for biolistic genetic transformation of common wheat (Triticum aestivum L.) using a particle inflow gun, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 402–411. doi 10.1134/S1022795406040077CrossRefGoogle Scholar
  65. 65.
    Jefferson, A., Kavamagh, A., and Bevan, W., GUS fusion: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J., 1987, vol. 6, pp. 3901–3907.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Vain, P., McMullen, M.D., and Finer, J.J., Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize, Plant Cell Rep., 1993, vol. 12, pp. 84–88. doi 10.1007/BF00241940CrossRefPubMedGoogle Scholar
  67. 67.
    Xu, Y., Li, B., and Jia, J., A novel system for Agrobacterium- mediated transformation of wheat (Triticum aestivum L.) cells, Cell Res., 1993, vol. 3, no. 1, pp. 49–60.CrossRefGoogle Scholar
  68. 68.
    Cheng, M., Fry, J.E., Pang, S., et al., Genetic transformation of wheat mediated by Agrobacterium tumefaciens, Plant Physiol., 1997, vol. 115, pp. 971–980. doi 10.1104/pp.115.3.971CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wood, D.W., Setubal, J.C., Kaul, R., et al., The genome of the natural genetic engineer Agrobacterim tumifaciens C58, Science, 2001, vol. 294, no. 5550, pp. 2317–2323. doi 10.1126/science.1066804CrossRefPubMedGoogle Scholar
  70. 70.
    Hu, S., Metz, C., Chay, H., et al., Agrobacteriummediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection, Plant Cell Rep., 2003, vol. 21, pp. 1010–1019. doi 10.1007/s00299-003-0617-6CrossRefPubMedGoogle Scholar
  71. 71.
    Przetakiewicz, A., Karas, A., Orczyk, W., et al., Agrobacterium- mediated transformation of polyploid cereals: the efficiency of selection and transgene expression in wheat, Cell Mol. Biol. Lett., 2004, vol. 9, no. 4B, pp. 903–917.PubMedGoogle Scholar
  72. 72.
    Gelvin, S.B., Agrobacterium and plant genes involved in T-DNA transfer and integration, Annu. Rev. Plant Physiol. Plant Mol. Bio., 2000, vol. l, no. 51, pp. 223–256. doi 10.1146/annurev.arplant.51.1.223CrossRefGoogle Scholar
  73. 73.
    Gelvin, S.B., Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” tool, Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 1, pp. 16–37. doi 10.1128/MMBR.67.1.16–37.2003CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tzfira, T. and Citovsky, V., Agrobacterium-mediated genetic transformation of plants: biology and biotechnology, Curr. Opin. Biotechnol., 2006, vol. 17, no. 2, pp. 147–154. doi 10.1016/j.copbio.2006.01.009CrossRefPubMedGoogle Scholar
  75. 75.
    Ziemienowicz, A., Tzfira, T., and Hohn, B., Mechanisms of T-DNA integration, in Agrobacterium: From Biology to Biotechnology, New York: Springer-Verlag, 2008, pp. 395–440. doi 10.1007/978-0-387-72290- 0_11CrossRefGoogle Scholar
  76. 76.
    Goodner, B.W., Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58, Science, 2001, vol. 294, no. 5550, pp. 2323–2328. doi 10.1126/science.1066803CrossRefPubMedGoogle Scholar
  77. 77.
    Goodner, B.W., Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens, J. Bacteriol., 1999, vol. 181, no. 17, pp. 5160–5166.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Wood, D.W., The genome of the natural genetic engineer Agrobacterium tumefaciens C58, Science, 2001, vol. 294, no. 5550, pp. 2317–2323. doi 10.1126/science. 1066804CrossRefPubMedGoogle Scholar
  79. 79.
    Lacroix, B., Kozlovsky, S.V., and Citovsky, V., Recent patents on Agrobacterium-mediated gene and protein transfer, for research and biotechnology, Recent Pat. DNA Gene Sequences, 2008, vol. 2, pp. 69–81.CrossRefGoogle Scholar
  80. 80.
    Zupan, J.R. and Zambryski, P., Transfer of T-DNA from Agrobacterium to the plant cell, Plant Physiol., 1995, vol. 107, pp. 1041–1047.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Attikum, H., Bundock, P., and Hooykaas, P.J., Nonhomologous end-joining proteins are required for Agrobacterium T-DNA integration, EMBO J., 2001, vol. 20, no. 22, pp. 6550–6558. doi 10.1093/emboj/20.22.6550CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Friesner, J. and Britt, A.B., Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration, Plant J., 2003, vol. 34, no. 4, pp. 427–440. doi 10.1046/j.1365- 313X.2003.01738.xCrossRefPubMedGoogle Scholar
  83. 83.
    Chilton, M.D. and Que, Q., Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration, Plant Physiol., 2003, vol. 133, no. 3, pp. 956–965. doi 10.1104/pp.103.026104CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Tzfira, T., Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates, Plant Physiol., 2003, vol. 133, no. 3, pp. 1011–1023. doi 10.1104/pp.103.032128CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Pacurar, D.E., Thordal-Christensen, H., Pacurar, M.L., et al., Agrobacterium tumefaciens: from crown gall tumors to genetic transformation, Physiol. Mol. Plant Pathol., 2011, vol. 76, pp. 76–81. doi 10.1016/J.Pmpp.2011.06.004CrossRefGoogle Scholar
  86. 86.
    Lee, L.Y. and Gelvin, S.B., T-DNA binary vectors and systems, Plant Physiol., 2008, vol. 146, no. 2, pp. 325–332. doi 10.1104/pp.107.113001CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    An, G., Watson, B.D., and Chiang, C.C., Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system, Plant Physiol., 1986, vol. 81, no. 1, pp. 301–305. doi 10.1104/pp.81.1.301CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hellens, R., Mullineau, P., and Klee, H., A guide to Agrobacterium binary Ti vectors, Trends Plant Sci., 2000, vol. 5, pp. 446–451.CrossRefPubMedGoogle Scholar
  89. 89.
    Lee, Y.W., Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, no. 26, pp. 12245–12249. doi 10.1073/pnas.92.26.12245CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lee, Y.W., The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein, Gene, 1996, vol. 179, no. 1, pp. 83–88. doi 10.1016/S0378- 1119(96)00328-9CrossRefPubMedGoogle Scholar
  91. 91.
    McLean, B.G., Greene, E.A., and Zambryski, P.C., Mutants of Agrobacterium VirA that activate vir gene expression in the absence of the inducer acetosyringone, J. Biol. Chem., 1994, vol. 4, no. 269, pp. 4–2645.Google Scholar
  92. 92.
    Stachel, S.E., Nester, E.W., and Zambryski, P.C., A plant cell factor induces Agrobacterium tumefaciens vir gene expression, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, no. 2, pp. 379–383. doi 10.1073/pnas.83.2.379CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Bolton, G.W., Nester, E.W., and Gordon, M.P., Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence, Science, 1986, vol. 232, pp. 983–985.CrossRefPubMedGoogle Scholar
  94. 94.
    Peng, W.T., Lee, Y.W., and Nester, E.W., The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE, J. Bacteriol., 1998, vol. 180, pp. 5632–5638.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Cangelosi, G.A., Ankenbauer, R.G., and Nester, E.W., Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein, Proc. Natl. Acad. Sci. U.S.A., 1990, vol. 87, no. 17, pp. 6708–6712. doi 10.1073/pnas.87.17.6708CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Steinau, M., Recent advances in wheat transformation, In Vitro Cell. Dev. Biol.: Plant, 2002, vol. 38, no. 5, pp. 404–414. doi 10.1079/IVP2002320CrossRefGoogle Scholar
  97. 97.
    Jones, H.D., Doherty, A., and Wu, H., Review of methodologies and a protocol for the Agrobacteriummediated transformation of wheat, Plant Methods, 2005, vol. 1, no. 1, p. 5. doi 10.1186/1746-4811-1-5CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Opabode, J.T., Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency, Biotechnol. Mol. Biol. Rev., 2006, vol. 1, no. 1, pp. 12–20.Google Scholar
  99. 99.
    Bhalla, P.L., Ottenhof, H.H., and Singh, M.B., Wheat transformation—an update of recent progress, Euphytica, 2006, vol. 149, no. 3, pp. 353–366. doi 10.1007/s10681-006-9087-6CrossRefGoogle Scholar
  100. 100.
    Khurana, P., Chauhan, H., and Desai, S.A., Wheat, in Compendium of Transgenic Crops: Transgenic Cereals and Forage Grasses, vol. 1 of Compendium of Transgenic Crop Plants, 2008, pp. 83–100.CrossRefGoogle Scholar
  101. 101.
    Xia, G., Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens, Acta Phytophysiol. Sin., 1998, vol. 25, no. 1, pp. 22–28.Google Scholar
  102. 102.
    Cheng, M., Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat, In Vitro Cell. Dev. Biol.: Plant, 2003, vol. 39, no. 6, pp. 595–604. doi 10.1079/IVP2003471CrossRefGoogle Scholar
  103. 103.
    Pérez-Piñeiro, P., Gago, J., Landin, M., and Gallego, P.P., Agrobacterium—mediated transformation of wheat: general overview and new approaches to model and identify the key factors involved, in Transgenic Plants—Advances and Limitations, Ozden, Y., Ed., Rijeka, Croatia: Intech Open Access, 2012, vol. 326.Google Scholar
  104. 104.
    Ishida, Y., Wheat (Triticum aestivum L.) transformation using immature embryos, Agrobacterium Protoc., 2015, vol. 1, pp. 189–198. doi 10.1007/978-1-4939-1695-5_15Google Scholar
  105. 105.
    Sparks, C.A., Doherty, A., and Jones, H.D., Genetic transformation of wheat via Agrobacterium-mediated DNA delivery, in Cereal Genomics: Methods and Protocols, 2014, pp. 235–250. doi 10.1007/978-1-62703-715-0_19CrossRefGoogle Scholar
  106. 106.
    Uzé, M., Potrykus, I., and Sautter, C., Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.), Cereal Res. Commun., 2000, vol. 28, nos. 1–2, pp. 17–23.Google Scholar
  107. 107.
    Amoah, B.K., Factors influencing Agrobacteriummediated transient expression of uidA in wheat inflorescence tissue, J. Exp. Bot., 2001, vol. 52, no. 358, pp. 1135–1142. doi 10.1093/jexbot/52.358.1135CrossRefPubMedGoogle Scholar
  108. 108.
    Ding, L., Li, S., Gao, J., et al., Optimization of Agrobacterium mediated transformation conditions in mature embryos of elite wheat, Mol. Biol. Rep., 2009, vol. 36, pp. 29–36.CrossRefPubMedGoogle Scholar
  109. 109.
    Ishida, Y., Hiei, Y., and Komari, T., High efficiency wheat transformation mediated by Agrobacterium tumefaciens, in Advances in Wheat Genetics: From Genome to Field, Ogihara et al., Eds., Springer-Verlag, 2015, pp. 167–173. doi 10.1007/978-4-431-55675- 6_18Google Scholar
  110. 110.
    Weir, B., Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker, Funct. Plant Biol., 2001, vol. 28, no. 8, pp. 807–818. doi 10.1071/PP99211CrossRefGoogle Scholar
  111. 111.
    Ke, X.Y., Manipulation of discriminatory T-DNA delivery by Agrobacterium into cells of immature embryos of barley and wheat, Euphytica, 2002, vol. 126, no. 3, pp. 333–343. doi 10.1023/A:1019960309149CrossRefGoogle Scholar
  112. 112.
    Hensel, G., Kastner, Ch., Oleszczuket, S., et al., Agrobacterium- mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize, Int. J. Plant Genomics, 2009. doi 10.1155/2009/835608Google Scholar
  113. 113.
    Wu, H., Factors influencing successful Agrobacteriummediated genetic transformation of wheat, Plant Cell Rep., 2003, vol. 21, no. 7, pp. 659–668. doi 10.1007/s00299-002-0564-7PubMedGoogle Scholar
  114. 114.
    Wu, H., Doherty, A., and Jones, H.D., Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes, Transgenic Res., 2008, vol. 17, no. 3, pp. 425–436. doi 10.1007/s11248- 007-9116-9CrossRefPubMedGoogle Scholar
  115. 115.
    Wu, H., Doherty, A., and Jones, H.D., Agrobacterium- mediated transformation of bread and durum wheat using freshly isolated immature embryos, in Transgenic Wheat, Barley and Oats: Production and Characterization Protocols, Jones, H.D. and Shewry, P.R., Eds., New York: Humana, 2009, pp. 93–103. doi 10.1007/978-1-59745-379-0_5CrossRefGoogle Scholar
  116. 116.
    Mitić, N., Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L., Biol. Plant., 2004, vol. 48, no. 2, pp. 179–184. doi 10.1023/B:BIOP.0000033442.15611.7dCrossRefGoogle Scholar
  117. 117.
    Suparthana, P., Shimizu, T., Nogawa, M., et al., Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens, J. Biosci. Bioengi., 2006, vol. 102, no. 3, pp. 162–170.CrossRefGoogle Scholar
  118. 118.
    Haliloglu, K. and Baenziger, P.S., Agrobacterium tumefaciens-mediated wheat transformation, Cereal Res. Commun., 2003, vol. 31, pp. 9–16.Google Scholar
  119. 119.
    McCormac, A.C., The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), Euphytica, 1998, vol. 99, no. 1, pp. 17–25. doi 10.1023/A:1018303102488CrossRefGoogle Scholar
  120. 120.
    Xue, Z.Y., Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+, Plant Sci., 2004, vol. 167, no. 4, pp. 849–859. doi 10.1016/j.plantsci.2004.05.034CrossRefGoogle Scholar
  121. 121.
    Bi, R.M., Production and analysis of transgenic wheat (Triticum aestivum L.) with improved insect resistance by the introduction of cowpea trypsin inhibitor gene, Euphytica, 2006, vol. 151, no. 3, pp. 351–360. doi 10.1007/s10681-006-9157-9CrossRefGoogle Scholar
  122. 122.
    Khanna, H. and Daggard, G., Agrobacterium tumefaciens- mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium, Plant Cell Rep., 2003, vol. 21, no. 5, pp. 429–436. doi 10.1007/s00299-002-0529-xCrossRefPubMedGoogle Scholar
  123. 123.
    Wright, M., Dawson, J., Dunder, E., et al., Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker, Plant Cell Rep., 2001, vol. 20, pp. 429–436. doi 10.1007/s002990100318CrossRefGoogle Scholar
  124. 124.
    Sarker, R.H. and Biswas, A., In vitro plantlet regeneration and Agrobacterium-mediated genetic transformation of wheat (Triticum aestivum L.), Plant Tissue Cult., 2002, vol. 12, pp. 155–165.Google Scholar
  125. 125.
    Patnaik, D., Vishnudasan, D., and Khurana, P., Agrobacterium- mediated transformation of mature embryos of Triticum aestivum and Triticum durum, Curr. Sci., 2006, vol. 91, pp. 307–313.Google Scholar
  126. 126.
    Fellers, J.P., Guenzi, A.C., and Taliaferro, C.M., Factors affecting the establishment and maintenance of embryogenic callus and suspension cultures of wheat (Triticum aestivum L.), Plant Cell Rep., 1995, vol. 15, no. 3, pp. 232–237. doi 10.1007/BF00193726CrossRefPubMedGoogle Scholar
  127. 127.
    Komari, T., Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542, Plant Cell Rep., 1990, vol. 9, no. 6, pp. 303–306. doi 10.1007/BF00232856CrossRefPubMedGoogle Scholar
  128. 128.
    Chugh, A. and Khurana, P., Herbicide-resistant transgenics of bread wheat (T. aestivum) and emmer wheat (T. dicoccum) by particle bombardment and Agrobacterium mediated approaches, Curr. Sci., 2003, vol. 84, pp. 78–83.Google Scholar
  129. 129.
    He, Y., Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv. Stewart) with improved efficiency, J. Exp. Bot., 2010, vol. 61, no. 6, pp. 1567–1581. doi 10.1093/jxb/erq035CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Feldmann, K.A. and David, M.M., Agrobacteriummediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach, Mol. Gen. Genet., 1987, vol. 208, pp. 1–9. doi 10.1007/BF00330414CrossRefGoogle Scholar
  131. 131.
    Hess, D., Pollen-based techniques in genetic manipulation, Int. Rev. Cytol., 1987, vol. 107, pp. 367–395.CrossRefGoogle Scholar
  132. 132.
    Hess, D., Dressler, K., and Nirnrnrichter, R., Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.), Plant Sci., 1990, vol. 72, pp. 233–244.CrossRefGoogle Scholar
  133. 133.
    Bechtold, N., Ellis, J., and Pelletier, G., In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants, C. R. Acad. Sci., Ser. III, 1993, vol. 316, no. 10, pp. 1194–1199.Google Scholar
  134. 134.
    Clough, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, vol. 16, no. 6, pp. 735–743. doi 10.1046/j.1365-313x.1998.00343.xCrossRefPubMedGoogle Scholar
  135. 135.
    Langridge, P., Brettschneide, R., Lazzeri, P., et al., Transformation of cereals via Agrobacterium and the pollen pathway: a critical assessment, Plant J., 1992, vol. 2, pp. 631–638.CrossRefGoogle Scholar
  136. 136.
    Pukhalskiy, V.A., Smirnov, S.P., Korostyleva, T.V., et al., Genetic transformation of wheat (Triticum aestivum L.) by Agrobacterium tumefaciens, Russ. J. Genet., 1996, vol. 32, no. 11, pp. 1390–1394.Google Scholar
  137. 137.
    Agarwal, S., Floral transformation of wheat, in Transgenic Wheat, Barley and Oats: Production and Characterization Protocols, 2009, pp. 105–113. doi 10.1007/978-1-59745-379-0_6Google Scholar
  138. 138.
    Zale, J.M., Evidence for stable transformation of wheat by floral dip in Agrobacterium tumefaciens, Plant Cell Rep., 2009, vol. 28, pp. 903–913. doi 10.1007/s00299-009-0696-0CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Risacher, T., Craze, M., Bowden, S., et al., Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation, in Transgenic Wheat, Barley and Oats: Production and Characterization Protocols, 2009, vol. 478, pp. 115–124. doi 10.1007/978- 1-59745-379-0_7CrossRefGoogle Scholar
  140. 140.
    Razzaq, A., Hafiz, I.A., Mahmood, I., et al., Development of in planta transformation protocol for wheat, Afr. J. Biotechnol., 2011, vol. 10, no. 5, p. 740. doi 10.5897/AJB10.1304Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. K. Gaponenko
    • 1
  • Ya. V. Mishutkina
    • 1
  • A. A. Timoshenko
    • 1
  • O. A. Shulga
    • 1
  1. 1.Koltzov Institute of Developmental Biology Russian Academy of SciencesMoscowRussia

Personalised recommendations