Advertisement

Russian Journal of Genetics

, Volume 54, Issue 2, pp 262–265 | Cite as

A Comparative Analysis of Genetic Variability and Differentiation in Panax vietnamensis Ha et Grushv. and P. ginseng C.A. Meyer Using ISSR Markers

  • E. A. Vasyutkina
  • I. Yu. Adrianova
  • G. D. Reunova
  • T. P. T. Nguyen
  • Yu. N. Zhuravlev
Short Communications
  • 17 Downloads

Abstract

A comparative analysis of the genetic variability and differentiation of rare medicinal ginseng species, Panax vietnamensis Ha et Grushv. and P. ginseng C.A. Meyer, was carried out using inter-simple sequence repeat markers. It was demonstrated that all the genetic diversity parameters of Vietnamese ginseng were high and considerably exceeded those of P. ginseng. On the contrary, the level of genetic differentiation was higher in true ginseng. It is suggested that the differences in the levels of genetic variability and differentiation of the two ginseng species were influenced by the demographic history, peculiarities of the reproductive system, and human activity.

Keywords

Panax vietnamensis Vietnamese ginseng P. ginseng rare plants genetic variability ISSR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kha Tkhi Zung and Grushvitskii, I.V., A new Panax (Araliaceae) species from Vietnam, Bot. Zh., 1985, vol. 70, no. 4, pp. 518–522.Google Scholar
  2. 2.
    Lê Thanh Son and Nguyên Tap, The basic ecology of Panax vietnamensis, J. Med., 2006, vol. 11, pp. 145–147.Google Scholar
  3. 3.
    Zhuravlev, Yu.N. and Kolyada, A.S., Araliaceae: zhen’shen’ i drugie (Araliaceae: Ginseng and Others), Vladivostok: Dal’nauka, 1996.Google Scholar
  4. 4.
    Krasnaya Kniga Rossiiskoi Federatsii (rasteniya i griby) (The Red Book of the Russian Federation (Plants and Fungi)), Moscow: T-vo nauchn. izd. KMK, 2008.Google Scholar
  5. 5.
    Echt, C.S., Erdahl, L.A., and McCoy, T.J. Genetic segregation of random amplified polymorphic DNA in diploid cultivated alfalfa, Genome, 1992, vol. 35, pp. 84–87.CrossRefPubMedGoogle Scholar
  6. 6.
    Peakall, R. and Smouse, P.E., GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, vol. 6, pp. 288–295. doi 10.1111/j.1471-8286.2005.01155.xCrossRefGoogle Scholar
  7. 7.
    Miller, M.P., Tools for Population Genetic Analysis (TFPGA) 1.3: A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data, Computer Software Distributed by Author, 1997.Google Scholar
  8. 8.
    Slatkin, M. and Barton, N.H., A comparison of three indirect methods for estimating average levels of gene flow, Evolution, 1989, vol. 43, pp. 1349–1368.CrossRefPubMedGoogle Scholar
  9. 9.
    Holsinger, K.E. and Lewis, P.O., Hickory: a package for analysis of population genetic data, v 1.1, software documentation, 2003—2007. http://darwin. eeb.uconn.edu/hickory/documentation.html.Google Scholar
  10. 10.
    Pritchard, J.K., Stephens, M., and Donnelly, P. Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Earl, D.A. and von Holdt, B.M., Structure harvester: a website and program for visualizing structure output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359–361. http://taylor0.biology. ucla.edu/structureHarvester/#.CrossRefGoogle Scholar
  12. 12.
    Li, S., Li, J., Yang, X.L., et al., Genetic diversity and differentiation of cultivated ginseng (Panax ginseng C.A. Meyer) populations in north-east China revealed by inter-simple sequence repeat (ISSR) markers, Genet. Resour. Crop. Evol., 2011, vol. 58, pp. 815–824. doi 10.1007/s10722-010-9618-9CrossRefGoogle Scholar
  13. 13.
    Schlag, E.M. and McIntosh, M.S., RAPD-based assessment of genetic relationships among and within American ginseng (Panax quinquefolius L.) populations and their implications for future conservation strategy, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 1553–1568. doi 10.1007/s10722-011-9784-4CrossRefGoogle Scholar
  14. 14.
    Zhuravlev, Y.N., Koren, O.G., Reunova, G.D., et al., Panax ginseng natural population: their past, current state and perspectives, Acta Pharmacol. Sin., 2008, vol. 29, no. 9, pp. 1127–1136. doi 10.1111/j.1745-7254.2008.00866.xCrossRefPubMedGoogle Scholar
  15. 15.
    Koren, O.G., Molecular markers for conservation techniques for ginseng (Panax ginseng S.A. Meyer) natural populations, Cand. Sci. (Biol.) Dissertation, Vladivostok: Biology and Soil Science Institute, Far East Branch of Russian Academy of Sciences, 2000.Google Scholar
  16. 16.
    Koren, O.G., Krylach, T.Y., Zaytseva, Y.A., and Zhuravlev, Y.N., Floral biology and embryology of Panax ginseng C.A. Meyer, 1st European Ginseng Congress, Marburg, 1998, pp. 221–231.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Vasyutkina
    • 1
  • I. Yu. Adrianova
    • 1
  • G. D. Reunova
    • 1
  • T. P. T. Nguyen
    • 2
  • Yu. N. Zhuravlev
    • 1
  1. 1.Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Ecology and Biological ResourcesVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations