Advertisement

Russian Journal of Genetics

, Volume 53, Issue 12, pp 1283–1298 | Cite as

Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation

  • Yu. F. Bogdanov
Reviews and Theoretical Articles
  • 37 Downloads

Abstract

The nematode C. elegans is a classic study object of developmental biology and genetics, which is particularly suitable for studying the molecular bases of meiosis. Developing meiocytes are located in the threadlike gonads of C. elegans in linear gradient order of the stages of meiosis, which facilitates studying the order of intracellular events during meiosis. C. elegans has polycentric chromosomes. This causes a special order of events during meiosis, and as a consequence, meiosis in C. elegance differs from canonical meiosis of most eukaryotes. In the meiotic prophase I, all chromosomes carry single protein “pairing centers.” They are responsible for joining homologous chromosomes in pairs. This initiates the formation of synaptonemal complexes (SCs). Programmed double-stranded DNA breaks appear after initiation of the SC assembly, and they give rise to meiotic recombination. The initiation of meiotic recombination after the chromosome pairing distinguishes the C. elegans meiotic pattern from those in the absolute majority of eukaryotes studied. C. elegans has strict crossing over interference, which allows for the formation of one chiasma per bivalent. In the late prophase I, the polycentric centromeres are remodeled, one of the chromosome ends acquires a cuplike kinetochore, and during two meiotic divisions, chromosomes behave as monocentric. The study of meiosis in C. elegans allows for separate investigation of synapsis and recombination of homologous chromosomes and provides material for studying the evolution of meiosis.

Keywords

meiosis polycentric chromosomes crossing over interference meiotic proteins synaptonemal complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstein, P., The synaptonemal complexes of Caenorhabditis elegans: pachytene karyotype analysis of male and hermaphrodite wild-type and him mutants, Chromosoma, 1982, vol. 86, no. 4, pp. 577–593.CrossRefPubMedGoogle Scholar
  2. 2.
    Bogdanov, Yu.F., Formation synaptonemal–like polycomplexes at leptotene and normal synaptonemal complexes at zygotene in Ascaris suum male meiosis, Chromosoma, 1977, vol. 61, pp. 1–21.CrossRefGoogle Scholar
  3. 3.
    Kundu, S.C. and Bogdanov, Yu.F., Ultrastructural studies of late meiotic prophase nuclei in spermatocytes of Ascaris sum, Chromosoma, 1979, vol. 70, pp. 375–384.CrossRefGoogle Scholar
  4. 4.
    Phillips, C.M., McDonald, K.L., and Dernburg, A.F., Cytological analysis of meiosis in Caenorhabditis elegans, Methods Mol. Biol., 2009, vol. 558, pp. 171–195.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barnes, T.M., Kohara, Y., Coulson, A., and Hekimi, S., Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans, Genetics, 1995, vol. 141, pp. 159–179.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Dernburg, A.F., McDonald, K., Moulder, G., et al., Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis, Cell, 1998, vol. 94, no. 3, pp. 387–398.CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Muse, T. and Boulton, S.J., Meiotic recombination in Caenorhabditis elegans, Chromosome Res., 2007, vol. 15, pp. 607–621.CrossRefPubMedGoogle Scholar
  8. 8.
    Lui, D.Y. and Coloiacovo, M.P., Meiotic development in Caenorhabditis elegans, Adv. Exp. Mol. Biol., 2013, vol. 75, pp. 133–170.CrossRefGoogle Scholar
  9. 9.
    Rog, O. and Dernburg, A.E., Chromosome pairing and synapsis during Caenorhabditis elegans meiosis, Curr. Opin. Cell Biol., 2013, vol. 25, pp. 349–356.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Woglar, A. and Jantsch, V., Chromosome movement in meiosis I prophase of Caenorhabditis elegans, Chromosoma, 2014, vol. 123, pp. 15–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Hodgkin, J., Horvitz, H.R., and Brenner, S., Nondisjunction mutants of the nematode Caenorhabditis elegans, Genetics, 1979, vol. 91, pp. 67–94.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zetka, M. and Rose, A., The genetics of meiosis in Caenorhabditis elegans, Trends Genet., 1995, vol. 11, pp. 27–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Friedland, A.E., Tzur, Y.B., Esvelt, K.M., et al., Heritable genome editing in C. elegans via a CRISPR-Cas9 system, Nat. Methods, 2013, vol. 10, pp. 741–743.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Severson, A.F., Ling, L., van Zuylen, V., and Meyer, B.J., The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation, Genes Dev., 2009, vol. 23, no. 15, pp. 1763–1778.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lee, J. and Hirano, T., RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis, J. Cell Biol., 2011, vol. 192, no. 2, pp. 263–276.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Seitan, V.C., Banks, P., Laval, S., et al., Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance, PLoS Biol., 2006, vol. 4, no. 8: e242CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lightfoot, J., Testori, S., Barroso, C., and Martinez-Perez, E., Loading of meiotic cohesin by SCC-2 is required for processing of DSBs and for the DNA damage checkpoint, Curr. Biol., 2011, vol. 32, no. 17, pp. 1421–1430.CrossRefGoogle Scholar
  18. 18.
    Wang, F., Yoder, J., Antoshechkin, I., and Han, M., Caenorhabditis elegans EVL-14/PDS-5 and SCC-3 are essential for sister chromatid cohesion in meiosis and mitosis, Mol. Cell Biol., 2003, vol. 23, no. 21, pp. 7698–7707.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Crittenden, S.L., Leonard, K.A., Byrd, D.T., and Kimble, J., Cellular analysis of the mitotic region in the Caenorhabtiis elegans adult germline, Mol. Biol. Cell, 2006, vol. 17, no. 7, pp. 3051–3061.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bogdanov, Yu.F., The unusually early formation of synaptonemal-like polycomplexes, in meiosis in males of ascarids, Tsitologiya, 1978, vol. 20, pp. 460–463.Google Scholar
  21. 21.
    Villeneuve, A.M., A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans, Genetics, 1994, vol. 136, pp. 887–902.PubMedPubMedCentralGoogle Scholar
  22. 22.
    McKim, K.S., Howell, A.M., and Rose, A.M., The effect of translocation on recombination frequency in Caenorhabditis elegans, Genetics, 1988, vol. 132, no. 4, pp. 987–1001.Google Scholar
  23. 23.
    Smolikov, S., Schild-Prufert, K., and Colaiacovo, M.P., CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis, PLoS Genet., 2008, vol. 4, no. 6. e1000088CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Phillips, C.M., Wong, C., Bhalla, N., et al., HIM-8 binds to the X chromosome pairing center and mediates chromosome-specific meiotic synapsis, Cell, 2005, vol. 123, pp. 1051–1063.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Phillips, C.M. and Dernburg, A.F., A family of zincfinger proteins is required for chromosome-specific pairing and synapsis during meiosis in C. elegans, Dev. Cell., 2006, vol. 11, pp. 817–829.CrossRefPubMedGoogle Scholar
  26. 26.
    MacQueen, A.J. and Villeneuve, A.M., Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans CHK-2, Genes Dev., 2001, vol. 15, pp. 1674–1687.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Rosenbluth, R.E. and Baillie, D.L., The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans, Genetics, 1981, vol. 99, pp. 415–428.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Rose, A.M., Baillie, D.L., and Curran, J., Meiotic pairing behavior of two free duplications of linkage group I in Caenorhabditis elegans, Mol. Gen. Genet., 1984, vol. 195, pp. 52–56.CrossRefPubMedGoogle Scholar
  29. 29.
    Herman, R.K. and Kari, C.K., Recombination between small X chromosome duplications and the X chromosome in Caenorhabditis elegans, Genetics, 1989, vol. 121, pp. 723–737.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bogdanov, Yu.F., Grishaeva, T.M., and Dadashev, S.Ya., Similarity of the domain structure of proteins as a basis for the evolutionarily conservation of meiosis, Int. Rev. Cytol., 2007, vol. 257, pp. 83–142.CrossRefPubMedGoogle Scholar
  31. 31.
    Bogdanov, Yu.F., Inverted meiosis and its place in the evolution of sexual reproduction pathways, Russ. J. Genet., 2016, vol. 52, no. 5, pp. 473–490. https://doi.org/10.1134/S1022795416050033.CrossRefGoogle Scholar
  32. 32.
    Penkner, A.M., Fridkin, A., Gloggnitzer, J., et al., Meiotic chromosome homology search involves modifications of the nuclear envelope protein Matefin/SUN-1, Cell, 2009, vol. 139, pp. 920–933.CrossRefPubMedGoogle Scholar
  33. 33.
    Sato, A., Isaac, B., and Phillips, C.M., Cytoskeletal forces span the nuclear envelope to coordinate meiotic chromosome pairing and synapsis, Cell, 2009, vol. 139, pp. 907–919.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wynne, D.J., Rog, O., Carlton, P.M., and Dernburg, A.F., Dynein-dependent processive chromosome motions promote homologous pairing in C. elegans meiosis, J. Cell Biol., 2012, vol. 196, pp. 47–64.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Harper, N.C., Rillo, R., Jover-Gil, S., et al., Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans, Dev. Cell, 2011, vol. 21, pp. 934–947.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Labella, S., Woglar, A., Jantsch, V., and Zetka, M., Polo kinases establish links between meiotic chromosomes and cytoskeletal forces essential for homolog pairing, Dev. Cell., 2011, vol. 21, pp. 948–958.CrossRefPubMedGoogle Scholar
  37. 37.
    Baudrimont, A., Penkner, A., Woglar, A., et al., Leptotene/zygotene chromosome movement via the SUN/KASH protein bridge in Caenorhabditis elegans, PLoS Genet., 2010, vol. 6. e1001219CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Couteau, F. and Zetka, M., DNA damage during meiosis induces chromatin remodeling and synaptonemal complex disassembly, Dev. Cell, 2011, pp. 20, no. 3, pp. 353–363.CrossRefGoogle Scholar
  39. 39.
    Cremer, T., Cremer, M., Dietzel, S., et al., Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol., 2006, vol. 18, pp. 307–316.CrossRefPubMedGoogle Scholar
  40. 40.
    Martinez-Perez, E. and Villeneuve, A.M., HTP-1-dependent constraints coordinate homolog pairing and synapsis, and promote chiasma formation during C. elegans meiosis, Genes Dev., 2005, vol. 19, no. 22, pp. 2727–2743.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Couteau, F., Nabeshima, K., Villeneuve, A., and Zetka, M., A component of C. elegans meiotic chromosome axis at the interface of homolog alignment, synapse, nuclei reorganization, and recombination, Curr. Biol., 2004, vol. 14, pp. 585–592.CrossRefPubMedGoogle Scholar
  42. 42.
    MacQueen, A.J., Phillips, C.M., Bhalla, N., et al., Chromosome sites play dual role to establish homologous synapsis during meiosis in C. elegans, Cell, 2005, vol. 123, pp. 1037–1050.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Smolikov, S., Schild-Prufert, K., and Colaiacovo, M.P., A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis, PLoS Genet., 2009, vol. 5, no. 10. e1000669CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    MacQueen, A.J., Colaiacovo, M.P., McDonald, K., and Villenueve, A.M., Synapsis dependent and intependent mechanism stabilize homolog pairing during meiotic 4 in C. elegans, Genes Dev., 2002, vol. 18, pp. 2428–2442.CrossRefGoogle Scholar
  45. 45.
    Colaiacovo, M.P., MacQueen, A.J., Martinez-Perez, E., et al., Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination, Dev. Cell, 2003, vol. 5, pp. 464–474.CrossRefGoogle Scholar
  46. 46.
    Alpi, A., Pasierbek, P., Gartner, A., and Loidl, J., Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans, Chromosoma, 2003, vol. 112, pp. 6–16.CrossRefPubMedGoogle Scholar
  47. 47.
    Mets, D.G. and Meyer, B.J., Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure, Cell, 2009, vol. 139, pp. 73–86.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Barber, L.J., Youds, J.L., Ward, J.D., et al., RTEL1 maintains genomic stability by suppressing homologous recombination, Cell, 2008, vol. 135, no. 2, pp. 261–271.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Youds, J.L., Mets, D.G., McIlwraith, M.J., et al., RTEL-1 enforces meiotic crossover interference and homeostasis, Science, 2010, vol. 327, no. 5970, pp. 1254–1258.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Martin, J.S., Winkelmann, N., Petalcorin, M.I., et al., RAD-51-dependent and-independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair, Mol. Cell Biol., 2005, vol. 25, no. 8, pp. 3127–3139.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Page, S.L. and Hawley, R.S., Genetics and molecular biology of the synaptonemal complex, Ann. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 525–558.CrossRefGoogle Scholar
  52. 52.
    Petalcorin, M.I., Sandall, J., Wigley, D.B., and Boulton, S.J., CeBRC-2 stimulates D-loop formation by RAD-51 and promotes DNA single-strand annealing, J. Mol. Biol., 2006, vol. 361, no. 2, pp. 231–242.CrossRefPubMedGoogle Scholar
  53. 53.
    Allers, T. and Lichten, M., Differential timing and control of noncrossover and crossover recombination during meiosis, Cell, 2001, vol. 106, pp. 47–57.CrossRefPubMedGoogle Scholar
  54. 54.
    Bishop, D.K. and Zickler, D., Early decision: meiotic crossover interference prior to stable strand exchange and synapsis, Cell, 2004, vol. 117, pp. 9–15.CrossRefPubMedGoogle Scholar
  55. 55.
    Börner, G.V, Kleckner, N., and Hunter, N., Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis, Cell, 2004, vol. 117, no. 1, pp. 29–45.CrossRefPubMedGoogle Scholar
  56. 56.
    Hayashi, M., Chin, G.M., and Villeneuve, A.M.C., C. elegans germ cells switch between distinct modes of double-strand break repair during meiotic prophase progression, PLoS Genet., 2007, vol. 3, no. 11. e191CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Goldfarb, T. and Lichten, M., Frequent and efficient use of the sister chromatid for DNA doublestrand break repair during budding yeast meiosis, PLoS Biol., 2010, vol. 8, no. 110. e1000520CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hillers, K.J. and Villeneuve, A.M., Chromosome-wide control of meiotic crossing over in C. elegans, Curr. Biol., 2003, vol. 13, no. 18, pp. 1641–1647.CrossRefPubMedGoogle Scholar
  59. 59.
    Pan, J., Sasaki, M., Kniewel, R., et al., A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation, Cell, 2011, vol. 144, no. 5, pp. 719–731.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Smagulova, F., Gregoretti, I.V., Brick, K., et al., Genome wide analysis reveals novel molecular features of mouse recombination hotspots, Nature, 2011, vol. 472, no. 7343, pp. 375–378.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rosu, S., Libuda, D.E., and Villeneuve, A.M., Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number, Science, 2011, vol. 334, pp. 1286–1289.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Boddy, M.N., Gaillard, P.H., McDonald, W.H., et al., Mus81-Eme1 are essential components of a Holliday junction resolvase, Cell, 2001, vol. 107, no. 4.Google Scholar
  63. 63.
    Nabeshima, K., Villeneuve, A.M., and Hillers, K.J., Chromosome-wide regulation of meiotic crossover formation in Caenorhabditis elegans requires properly assembled chromosome axes, Genetics, 2004, vol. 168, no. 3, pp. 1275–1292.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kohl, K.P. and Sekelsky, J., Meiotic and mitotic recombination in meiosis, Genetics, 2013, vol. 194, pp. 327–334.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    De Muyt, A., Jessop, L., Kolar, E., et al., BLM helicase ortholog Sgs1 is a central regulator of meiotic recombination intermediate metabolism, Mol. Cell, 2012, vol. 46, pp. 43–53.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zakharyevich, K., Tang, S., Ma, Y., and Hunter, N., Delineation of joint molecule resolution pathways in meiosis identifies a crossover-specific resolvase, Cell, 2012, vol. 149, pp. 334–347.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    O’Neil, N.J., Martin, J.S., Youds, J.L., et al., Joint molecule resolution requires the redundant activities of MUS-81 and XPF-1 during Caenorhabditis elegans meiosis, PLoS Genet., 2013, vol. 9. e1003582. doi 10.1371/journal.pgen.1003582CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Saito, T.T., Lui, D.Y., Kim, H-M., et al., Interplay between structure-specific endonucleases for crossover control during Caenorhabditis elegans meiosis, PLoS Genet., 2013, vol. 9. e1003586. doi 10.1371/journal. pgen.1003586CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Agostinho, A., Meier, B., Sonneville, R., et al., Combinatorial regulation of meiotic Holliday junction resolution in C. elegans by HIM-6 (BLM) helicase, SLX-4, and the SLX-1, MUS-81 and XPF-1 nucleases, PLoS Genet., 2013, vol. 9. e1003591. doi 10.1371/journal. pgen.1003591CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Bellendir, S.P. and Sekelsky, J., An elegans solution for crossover formation, PLoS Genet., 2013, vol. 9, no. 7. e1003658CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ip, S.C., Rass, U., Blanco, M.G., et al., Identification of Holliday junction resolvases from humans and yeast, Nature, 2008, vol. 456, pp. 357–361.CrossRefPubMedGoogle Scholar
  72. 72.
    Bhalla, N., Wynne, D.J., Jantsch, V., and Dernburg, A.F., ZHP-3 acts at crossovers to couple meiotic recombination with synaptonemal complex disassembly and bivalent formation in C. elegans, PLoS Genet., 2008, vol. 4. e1000235CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yokoo, R., Zawadzki, K.A., Nabeshima, K., et al., COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers, Cell, 2012, vol. 149, pp. 75–87.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Nabeshima, K., Villeneuve, A.M., and Colaiácovo, M.P., Crossing over is coupled to late meiotic prophase bivalent differentiation through asymmetric disassembly of the SC, J. Cell Biol., 2005, vol. 168, pp. 683–689.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    de Carvalio, S.E., Zaaijer, S., Smolikov, S., et al., LAB-1 antagonize the Aurora B kinase in C. elegsans, Genes Dev., 2008, vol. 22, no. 20, pp. 2869–2885.CrossRefGoogle Scholar
  76. 76.
    Kitajima, T.S., Kawashima, S.A., and Watanabe, Y., The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis, Nature, 2004, vol. 427, no. 6974, pp. 510–517.CrossRefPubMedGoogle Scholar
  77. 77.
    Grishaeva, T.M., Kulichenko, D., and Bogdanov, Y.F., Bioinformatical analysis of eukaryotic shugoshins reveals meiosis-specific features of vertebrate shugoshins, Peer J., 2016. 4:e2736.2016. 4:e2736.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bhalla, N. and Dernburg, A.F., A conserved checkpoints monitor meiotic chromosome synapsis in Caenorhabditis elegans, Science, 2005, vol. 310, no. 5754, pp. 1683–1686.CrossRefPubMedGoogle Scholar
  79. 79.
    Harper, N.C., Rillo, R., Jover-Gil, S., et al., Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in Caenorhabditis elegans, Dev. Cell., 2011, vol. 21, no. 5, pp. 934–947.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Joyce, E.F. and McKim, K.S., Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation, Genetics, 2009, vol. 181, pp. 39–51.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Joshi, N., Barot, A., Amison, C., and Borner, G.V., Pch2 links chromosome axis at future crossover sites and crossover distribution during yeast meiosis, PLoS Genet., 2009, vol. 5, no. 7. e1000557CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wignall, S.M. and Villeneuve, A.M., Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis, Nat. Cell Biol., 2009, vol. 11, no. 7, pp. 839–844.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Dumont, J., Oegema, K., and Desai, A., A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis, Nat. Cell Biol., 2010, vol. 12, pp. 894–901.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kaitna, S., Pasierbek, P., and Jantsch, M., The Aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis, Curr. Biol., 2002, vol. 12, pp. 798–812.CrossRefPubMedGoogle Scholar
  85. 85.
    Rogers, E., Bishop, J.D., Waddle, J.A., et al., The Aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenohabditis elegans meiosis, J. Cell Biol., 2002, vol. 157, no. 2, pp. 219–229.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bogdanov, Yu.F., Konservatizm i evolyutsiya meioza: molekulyarnye osnovy (Conservatism and the Evolution of Meiosis: the Molecular Basis), Lambert Academic Publishing, 2016.Google Scholar
  87. 87.
    Heckman, S., Jankowska, M., Schubert, V., et al., Altenative meiotic chromatid segregation in the holocentric plant Luzula elegans, Nat. Comm., 2014. doi 10.1038/ncomms5979Google Scholar
  88. 88.
    Grishaeva, T.M. and Bogdanov, Yu.F., Evolutionary conservation of recombination proteins and variability of meiosis-specific proteins of chromosomes, Russ. J. Genet., 2017, vol. 53, no. 5, pp. 542–550. https://doi.org/10.1134/S1022795417040081.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations