Advertisement

Russian Journal of Genetics

, Volume 53, Issue 11, pp 1243–1258 | Cite as

Aberrant DNA methylation in lymphocytes of children with neurodevelopmental disorders

  • O. Yu. Naumova
  • S. Yu. Rychkov
  • V. V. Odintsova
  • S. A. Kornilov
  • E. V. Shabalina
  • D. V. Antsiferova
  • O. V. Zhukova
  • E. L. Grigorenko
Human Genetics
  • 26 Downloads

Abstract

Recent research in the field of genomics and epigenetics has provided evidence that alterations in the system of epigenetic regulation are highly involved in the molecular etiology of neurodegenerative and neuropathic disorders. However, there is a gap in knowledge on the epigenetic perturbations that may accompany the CNS impairments during the development in the prenatal period and their manifestation as a congenital encephalopathy in the early postnatal period of child development. The present study is one of the first attempts aimed at addressing this gap. Here, we present data on genome-wide profiles of DNA methylation obtained using the Illumina HumanMethylation450 microarray in peripheral blood cells in a sample of young children (up to four years of age) diagnosed with congenital encephalopathy. We provide evidence on systematic alterations in the epigenome—predominant hypermethylation of gene promoter associated CpG islands—related to the CNS impairment in children. Specifically, we found significant DNA methylation changes in genes involved in DNA-dependent transcription regulation and transcription factor binding, with a key role of the transcription factor JUN; in genes controlling cellular response to hypoxia; and in genes involved in the control of neuronal development, functioning, and death.

Keywords

encephalopathy peripheral blood lymphocytes genome-wide DNA methylation Illumina HumanMethylation450 differential methylation epigenetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zahir, F.R. and Brown, C.J., Epigenetic impacts on neurodevelopment: pathophysiological mechanisms and genetic modes of action, Pediatr. Res., 2011, vol. 69, no. 5, part 2, pp. 92R–100R. doi 10.1203/PDR.0b013e318213565eCrossRefPubMedGoogle Scholar
  2. 2.
    Landgrave-Gómez, J., Mercado-Gómez, O., and Guevara-Guzmán, R. Epigenetic mechanisms in neurological and neurodegenerative diseases, Front. Cell Neurosci., 2015, vol. 9, pp. 1–11. doi 10.3389/fncel.2015.00058Google Scholar
  3. 3.
    Jakovcevski, M. and Akbarian, S., Epigenetic mechanisms in neurological disease, Nat. Med., 2012, vol. 18, no. 8, pp. 1194–1204. doi 10.1038/nm.2828CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ravi, B. and Kannan, M., Epigenetics in the nervous system: an overview of its essential role, Indian J. Hum. Genet., 2013, vol. 19, no. 4, pp. 384–391. doi 10.4103/0971-6866.124357CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dawson, T.M., Ko, H.S., and Dawson, V.L., Genetic animal models of Parkinson’s disease, Neuron, 2010, vol. 66, no. 5, pp. 646–661. doi 10.1016/j.neuron. 2010.04.034CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brown, R.E., Improving animal models for nervous system disorders, Genes Brain Behav., 2012, vol. 11, pp. 753–756. doi 10.1111/j.1601-183X.2012.00808.xCrossRefPubMedGoogle Scholar
  7. 7.
    Espada, J. and Esteller, M., Mouse models in epigenetics: insights in development and disease, Brief Funct. Genomics, 2013, vol. 12, no. 3, pp. 279–287. doi 10.1093/bfgp/elt005CrossRefPubMedGoogle Scholar
  8. 8.
    Fernández-Santiago, R. and Ezquerra, M., Epigenetic research of neurodegenerative disorders using patient iPSC-Based models, Stem Cells Int., 2016, vol. 2016, pp. 1–16. doi 10.1155/2016/9464591CrossRefGoogle Scholar
  9. 9.
    Moreau, M.P., Bruse, S.E., David-Rus, R., et al., Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder, Biol. Psychiatry, 2011, vol. 69, pp. 188–193. doi 10.1016/j.biopsych.2010.09.039CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McGowan, P.O., Sasaki, A., Huang, T.C., et al., Promoter- wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain, PLoS One, 2008, vol. 3, e2085. doi 10.1371/journal.pone.0002085CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Barrachina, M. and Ferrer, I., DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain, J. Neuropathol. Exp. Neurol., 2009, vol. 68, pp. 880–891. doi 10.1097/NEN.0b013e3181- af2e46CrossRefPubMedGoogle Scholar
  12. 12.
    Sanchez-Mut, J., Heyn, H., Vidal, E., et al., Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns, Transl. Psych., 2016, vol. 6, e718. doi 10.1038/tp.2015.214CrossRefGoogle Scholar
  13. 13.
    Koch, C.M. and Wagner, W., Epigenetic-aging-signature to determine age in different tissues, Aging (Albany New York), 2011, vol. 3, no. 10, pp. 1018–1027. doi 10.18632/aging.100395Google Scholar
  14. 14.
    Horvath, S., Zhang, Y., Langfelder, P., et al., Aging effects on DNA methylation modules in human brain and blood tissue, Genome Biol., 2012, vol. 13, p. R97. doi 10.1186/gb-2012-13-10-r97CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dempster, E.L., Pidsley, R., Schalkwyk, L.C., et al., Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder, Hum. Mol. Genet., 2011, vol. 20, pp. 4786–4796. doi 10.1093/hmg/ddr416CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Davies, M.N., Volta, M., Pidsley, R., et al., Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood, Genome Biol., 2012, vol. 13, no. 6, p. R43. doi 10.1186/gb-2012-13-6-r43CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Masliah, E., Dumaop, W., Galasko, D., et al., Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes, Epigenetics, 2013, vol. 8, pp. 1030–1038. doi 10.4161/epi.25865CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ozanne, S.E. and Constância, M., Mechanisms of disease: the developmental origins of disease and the role of the epigenotype, Nat. Clin. Pract. Endocrinol. Metab., 2007, vol. 3, no. 7, pp. 539–546. doi 10.1038/ncpendmet0531CrossRefPubMedGoogle Scholar
  19. 19.
    Weaver, I.C., Cervoni, N., Champagne, F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, vol. 7, pp. 847–854. doi 10.1038/nn1276CrossRefPubMedGoogle Scholar
  20. 20.
    Dubrovina, I.V., Psikhicheskoe razvitie vospitannikov detskogo doma (Psychic Development of Pupils of Orphanage), Moscow: Pedagogika, 1990.Google Scholar
  21. 21.
    Doskin, V.A., Razvitie i vospitanie detei v domakh rebenka (Development and Education of Children in Orphanages), Moscow: VLADOS-PRESS, 2007.Google Scholar
  22. 22.
    Aryee, M.J., Jaffe, A.E., Corrada-Bravo, H., et al., Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays, Bioinformatics, 2014, vol. 30, no. 10, pp. 1363–1369. doi 10.1093/bioinformatics/btu049CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ritchie, M., Phipson, B., Wu, D., et al., Limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res., 2015, vol. 43, e47. doi 10.1093/nar/gkv007CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bibikova, M., Barnes, B., Tsan, C., et al., High density DNA methylation array with single CpG site resolution, Genomics, 2011, vol. 98, pp. 288–295. doi 10.1016/j.ygeno.2011.07.007CrossRefPubMedGoogle Scholar
  25. 25.
    Jaffe, A.E., Murakami, P., Lee, H., et al., Bump hunting to identify differentially methylated regions in epigenetic epidemiology, Int. J. Epidemiol., 2012, vol. 41, pp. 200–209. doi 10.1093/ije/dyr238CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jaffe, A.E. and Irizarry, R.A., Accounting for cellular heterogeneity is critical in epigenome-wide association studies, Genome Biol., 2013, vol. 15, p. R31. doi 10.1186/gb-2014-15-2-r31CrossRefGoogle Scholar
  27. 27.
    Reinius, L.E., Acevedo, N., Joerink, M., et al., Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility, PLoS One, 2012, vol. 7, e41361. doi 10.1371/journal.pone.0041361CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Metsalu, T. and Vilo, J., Clustvis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap, Nucleic Acids Res., 2015, vol. 43, no. W1, pp. W566–W570. doi 10.1093/nar/gkv468CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Speir, M.L., Zweig, A.S., Rosenbloom, K.R., et al., The UCSC Genome Browser database: 2016 update, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D717–D725. doi 10.1093/nar/gkv1275CrossRefPubMedGoogle Scholar
  30. 30.
    Rebhan, M., Chalifa-Caspi, V., Prilusky, J., et al., GeneCards: integrating information about genes, proteins and diseases, Trends Genet., 1997, vol. 13, no. 4, pp. 163. http://dx.doi.org/.doi 10.1016/S0168- 9525(97)01103-7CrossRefPubMedGoogle Scholar
  31. 31.
    Thomas, P.D., Campbell, M.J., Kejariwal, A., et al., PANTHER: a library of protein families and subfamilies indexed by function, Genome Res., 2003, vol. 13, no. 9, pp. 2129–2142. doi 10.1101/gr.772403CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dennis, G.J., Sherman, B.T., Hosack, D.A., et al., DAVID: Database for Annotation, Visualization, and Integrated Discovery, Genome Biol., 2003, vol. 4, no. 5, p. P3. doi 10.1186/gb-2003-4-9-r60CrossRefPubMedGoogle Scholar
  33. 33.
    Chen, E.Y., Tan, C.M., Kou, Y., et al., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinf., 2013, vol. 14, p. 128. doi 10.1186/1471-2105-14-128CrossRefGoogle Scholar
  34. 34.
    Warde-Farley, D., Donaldson, S.L., Comes, O., et al., The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function, Nucleic Acids Res., 2010, vol. 38, pp. W214–W220. doi 10.1093/nar/gkq537CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Szklarczyk, D., Franceschini, A., Wyder, S., et al., STRING v10: protein—protein interaction networks, integrated over the tree of life, Nucleic Acids Res., 2015, vol. 43, pp. D447–D452. doi 10.1093/nar/gku1003CrossRefPubMedGoogle Scholar
  36. 36.
    Satake, W., Nakabayashi, Y., Mizuta, I., et al., Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease, Nat. Genet., 2009, vol. 41, pp. 1303–1307. doi 10.1038/ng.485CrossRefPubMedGoogle Scholar
  37. 37.
    Pihlstrøm, L., Rengmark, A., Bjørnarå, K.A., et al., Fine mapping and resequencing of the PARK16 locus in Parkinson’s disease, J. Hum. Genet., 2015, vol. 60, pp. 357–362. doi 10.1038/jhg.2015.34CrossRefPubMedGoogle Scholar
  38. 38.
    Miñones-Moyano, E., Friedländer, M.R., Pallares, J., et al., Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction, RNA Biol., 2013, vol. 10, no. 7, pp. 1093–1106. doi 10.4161/rna.24813CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Feng, J. and Fan, G., The role of DNA methylation in the central nervous system and neuropsychiatric disorders, Int. Rev. Neurobiol., 2009, vol. 89, pp. 67–87. doi 10.1016/S0074-7742(09)89004-1CrossRefPubMedGoogle Scholar
  40. 40.
    Cacabelos, R., Epigenetics of brain disorders: the paradigm of Alzheimer’s disease, J. Alzheimers Dis. Parkinsonism, 2016, vol. 6, p. 229. doi 10.4172/2161- 0460.1000229CrossRefGoogle Scholar
  41. 41.
    Rangasamy, S., D’Mello, S.R., and Narayanan, V., Epigenetics, autism spectrum, and neurodevelopmental disorders, Neurotherapeutics, 2013, vol. 10, pp. 742–756. doi 10.1007/s13311-013-0227-0CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tabolacci, E. and Chiurazzi, P., Epigenetics, fragile X syndrome and transcriptional therapy, Am. J. Med. Genet., 2013, vol. 161A, pp. 2797–2808. doi 10.1002/ajmg.a.36264CrossRefPubMedGoogle Scholar
  43. 43.
    Kubota, T., Miyake, K., and Hirasawa, T., Role of epigenetics in Rett syndrome, Epigenomics, 2013, vol. 5, pp. 583–592. doi 10.2217/epi.13.54CrossRefPubMedGoogle Scholar
  44. 44.
    Kalsner, L. and Chamberlain, S.J., Prader—Willi, Angelman, and 15q11-q13 duplication syndromes, Pediatr. Clin. North. Am., 2015, vol. 62, no. 3, pp. 587–606. doi 10.1016/j.pclCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • O. Yu. Naumova
    • 1
    • 2
    • 3
  • S. Yu. Rychkov
    • 1
  • V. V. Odintsova
    • 2
    • 4
  • S. A. Kornilov
    • 2
    • 3
  • E. V. Shabalina
    • 2
  • D. V. Antsiferova
    • 2
  • O. V. Zhukova
    • 1
  • E. L. Grigorenko
    • 2
    • 3
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Department of PsychologySt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Texas Institute for Measurements, Evaluation and StatisticsUniversity of HoustonHoustonUSA
  4. 4.Bakulev Scientific Center of Cardiovascular SurgeryMoscowRussia

Personalised recommendations