Skip to main content
Log in

Epigenetic silencing of genomic structural variations

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

A great amount of copy number variations (CNVs) are identified in the human genome. Most of them are neutral; nevertheless, the role of CNVs in the pathogenesis of hereditary diseases is still significant. Especially, this is important for neuropsychiatric disorders, such as intellectual disability and autism. When analyzing the CNV-associated diseases, the controversial question is to distinguish the pathogenic CNVs among common polymorphic variants and to predict the disease risk in other children of the family. Unfortunately, the mechanisms of phenotypic expression and incomplete penetrance of CNVs remain largely unknown. Currently, incomplete penetrance and variable expressivity of CNVs are attributed mainly to allelic interaction of different genetic variations. However, epigenetic mechanisms of gene expression regulation in the context of structural variation of the genome are poorly explored. It is possible that epigenetic modifications of the genome regions with CNVs may underlie the understanding of ways of phenotypic manifestations of structural variations in the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iyer, J. and Girirajan, S., Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders, Brief. Funct. Genomics, 2015, vol. 14, no. 5, pp. 315–328. doi 10.1093/bfgp/ elv018

    Article  PubMed  Google Scholar 

  2. Christensen, D.L., Baio, J., Braun, K.V.N., et al., Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012, MMWR Surveill. Summ., 2016, vol. 65, no. 3, pp. 1–23. doi 10.15585/mmwr.ss6503a1

    Article  PubMed  Google Scholar 

  3. Filippova, N.V. and Baryl’nik, Yu.B., Epidemiology of autism: a modern view on the problem, Sots. Klin. Psikhiatr., 2014, vol. 24, no. 3, pp. 96–101.

    Google Scholar 

  4. Persico, A.M. and Napolioni, V., Autism genetics, Behav. Brain Res., 2013, vol. 251, pp. 95–112. doi 10.1016/j.bbr.2013.06.012

    Article  PubMed  Google Scholar 

  5. Wang, B., Ji, T., Zhou, X., et al., CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens, Sci. Rep., 2016, vol. 6: 25954. doi 10.1038/srep25954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pembrey, M., Golding, J., and Connelly, J., ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis, Eur. J. Hum. Genet., 2015, vol. 23, no. 9, p. 1113. doi 10.1038/ejhg.2014.262

    Article  CAS  PubMed  Google Scholar 

  7. Cini, G., Carnevali, I., Quaia, M., et al., Concomitant mutation and epimutation of the MLH1 gene in a Lynch syndrome family, Carcinogenesis, 2015, vol. 36, no. 4, pp. 452–458. doi 10.1093/carcin/bgv015

    Article  CAS  PubMed  Google Scholar 

  8. http://dgv.tcag.ca/dgv/app/home.

  9. https://decipher.sanger.ac.uk/.

  10. Rosenfeld, J.A., Coe, B.P., Eichler, E.E., et al., Estimates of penetrance for recurrent pathogenic copynumber variations, Genet. Med., 2013, vol. 15, pp. 478–481. doi 10.1038/gim.2012.164

    Article  CAS  PubMed  Google Scholar 

  11. Kirov, G., Rees, E., Walters, J.T.R., et al., The penetrance of copy number variations for schizophrenia and developmental delay, Biol. Psychiatry, 2014, vol. 75, no. 5, pp. 378–385. doi 10.1016/j.biopsych.2013.07.022

    Article  CAS  PubMed  Google Scholar 

  12. Vassos, E., Collier, D.A., Holden, S., et al., Penetrance for copy number variants associated with schizophrenia, Hum. Mol. Genet., 2010, vol. 19, no. 17, pp. 3477–3481. doi 10.1093/hmg/ddq259

    Article  CAS  PubMed  Google Scholar 

  13. Kashevarova, A.A., Nazarenko, L.P., Skryabin, N.A., et al., Array CGH analysis of a cohort of Russian patients with intellectual disability, Gene, 2014, vol. 536, no. 1, pp. 145–150. doi 10.1016/j.gene.2013.11.029

    Article  CAS  PubMed  Google Scholar 

  14. Kashevarova, A.A., Nazarenko, L.P., Schultz-Pedersen, S., et al., Single gene microdeletions and microduplication of 3p26.3 in three unrelated families: CNTN6 as a new candidate gene for intellectual disability, Mol. Cytogenet., 2014, vol. 7: 97. doi 10.1186/s13039-014- 0097-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beckmann, J.S., Estivill, X., and Antonarakis, S.E., Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability, Nat. Rev. Genet., 2007, vol. 8, no. 8, pp. 639–646. doi 10.1038/nrg2149

    Article  CAS  PubMed  Google Scholar 

  16. Lee, C. and Scherer, S.W., The clinical context of copy number variation in the human genome., Expert Rev. Mol. Med., 2010, vol. 12: e8. doi 10.1017/S1462399410001390

    Article  PubMed  Google Scholar 

  17. Lindstrand, A., Davis, E.E., Carvalho, C.M.B., et al., Recurrent CNVs and SNVs at the NPHP1 locus contribute pathogenic alleles to Bardet–Biedl syndrome, Am. J. Hum. Genet., 2014, vol. 94, no. 5, pp. 745–754. doi 10.1016/j.ajhg.2014.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, Y.V. and Kardia, S.L.R., Identification of epistatic effects using a protein–protein interaction database, Hum. Mol. Genet., 2010, vol. 19, no. 22, pp. 4345–4352. doi 10.1093/hmg/ddq356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stam, M., Paramutation: a heritable change in gene expression by allelic interactions in trans, Mol. Plant, 2009, vol. 2, no. 4, pp. 578–588. doi 10.1093/mp/ssp020

    Article  CAS  PubMed  Google Scholar 

  20. Brink, R., A Genetic change associated with the R locus in maize which is directed and potentially reversible, Genetics, 1956, vol. 41, no. 6, pp. 872–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brink, R., Paramutation at the R locus in maize, Cold Spring Harb. Symp. Quant. Biol., 1958, vol. 23, pp. 379–391.

    Article  CAS  PubMed  Google Scholar 

  22. Ronsseray, S., Paramutation phenomena in non-vertebrate animals, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 39–46. doi 10.1016/j.semcdb.2015.08.009

    Article  PubMed  Google Scholar 

  23. Springer, N.M. and McGinnis, K.M., Paramutation in evolution, population genetics and breeding, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 33–38. doi 10.1016/j.semcdb.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Hollick, J.B., Paramutation: a trans-homolog interaction affecting heritable gene regulation, Curr. Opin. Plant Biol., 2012, vol. 15, no. 5, pp. 536–543. doi 10.1016/j.pbi.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  25. Hövel, I., Pearson, N.A., and Stam, M., Cis-acting determinants of paramutation, Semin. Cell Dev. Biol., 2015, vol. 44, pp. 3–32 doi 10.1016/j.semcdb.2015.08.012

    Article  Google Scholar 

  26. Zhong, X., Hale, C.J., Law, J.A., et al., DDR complex facilitates global association of RNA polymerase V to promoters and evolutionarily young transposons, Nat. Struct. Mol. Biol., 2012, vol. 19, no. 9, pp. 870–875. doi 10.1038/nsmb.2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gent, J.I., Ellis, N.A., Guo, L., et al., CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize, Genome Res., 2013, vol. 23, no. 4, pp. 628–637. doi 10.1101/gr.146985.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aramayo, R. and Metzenberg, R.L., Meiotic transvection in fungi, Cell, 1996, vol. 86, no. 1, pp. 103–113. doi 10.1016/S0092-8674(00)80081-1

    Article  CAS  PubMed  Google Scholar 

  29. Hammond, T.M., Spollen, W.G., Decker, L.M., et al., Identification of small RNAs associated with meiotic silencing by unpaired DNA, Genetics, 2013, vol. 194, no. 1, pp. 279–284. doi 10.1534/genetics.112.149138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, Y., Smith, K.M., Taylor, J.W., et al., Endogenous small RNA mediates meiotic silencing of a novel DNA transposon, G3 (Bethesda), 2015, vol. 5, no. 10, pp. 1949–1960. doi 10.1534/g3.115.017921

    Article  Google Scholar 

  31. Turner, J.M.A., Meiotic silencing in mammals, Annu. Rev. Genet., 2015, vol. 49, pp. 3–412 doi 10.1146/annurev-genet-112414-055145

    Article  Google Scholar 

  32. Fayer, S., Yu, Q., Kim, J., et al., Robertsonian translocations modify genomic distribution of ?H2AFX and H3.3 in mouse germ cells, Mamm. Genome, 2016, vol. 27, nos. 5–6, pp. 225–236. doi 10.1007/s00335-016-9630-2

    Article  CAS  PubMed  Google Scholar 

  33. Ceroni, F., Simpson, N.H., Francks, C., et al., Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment, Eur. J. Hum. Genet., 2014, vol. 22, no. 10, pp. 1165–1171. doi 10.1038/ejhg.2014.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gregory, S.G., Connelly, J.J., Towers, A.J., et al., Genomic and epigenetic evidence for oxytocin receptor deficiency in autism, BMC Med., 2009, vol. 7: 62. doi 10.1186/1741-7015-7-62

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith, A.C., Suzuki, M., Thompson, R., et al., Maternal gametic transmission of translocations or inversions of human chromosome 11p15.5 results in regional DNA hypermethylation and downregulation of CDKN1C expression, Genomics, 2012, vol. 99, no. 1, pp. 25–35. doi 10.1016/j.ygeno.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  36. Seisenberger, S., Peat, J.R., Hore, T.A., et al., Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers, Philos. Trans., 2013, vol. 368, no. 1609, p. 20110330. doi 10.1098/rstb.2011.0330

    Article  Google Scholar 

  37. Guo, H., Zhu, P., Yan, L., et al., The DNA methylation landscape of human early embryos, Nature, 2014, vol. 511, no. 7511, pp. 606–610. doi 10.1038/ nature13544

    Article  CAS  PubMed  Google Scholar 

  38. Guo, F., Yan, L., Guo, H., et al., The transcriptome and DNA methylome landscapes of human primordial germ cells, Cell, 2015, vol. 161, no. 6, pp. 1437–1452. doi 10.1016/j.cell.2015.05.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Skryabin.

Additional information

Original Russian Text © N.A. Skryabin, S.A. Vasilyev, I.N. Lebedev, 2017, published in Genetika, 2017, Vol. 53, No. 10, pp. 1132–1140.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skryabin, N.A., Vasilyev, S.A. & Lebedev, I.N. Epigenetic silencing of genomic structural variations. Russ J Genet 53, 1072–1079 (2017). https://doi.org/10.1134/S1022795417100106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795417100106

Keywords

Navigation