Russian Journal of Genetics

, Volume 53, Issue 10, pp 1126–1136 | Cite as

Genetic variability and population structure of sockeye salmon from the Asian Coast of Pacific Ocean

  • A. M. Khrustaleva
  • N. V. Klovach
  • J. E. Seeb
Animal Genetics


Variability of six microsatellite loci and 45 single nucleotide polymorphism (SNP) loci was analyzed in 17 samples of sockeye salmon from 10 major spawning watersheds on the Asian coast of the Pacific Ocean. On the basis of the analysis of SNP loci variability of sockeye salmon in the examined part of the range, five population groups were identified, including local stocks from the Palana, Okhota, and Kamchatka rivers, as well as the population groups of Southwestern Kamchatka, and Northeastern Kamchatka and Chukotka. Rather different pattern of samples differentiation was obtained by estimating variability of six microsatellite DNA loci. Regional complexes of the eastern and western coasts of Kamchatka were identified. Moreover, sockeye salmon from the Palana River fell into the cluster of Western Kamchatka populations, while the population from the Okhota River and Meynypilgin lake–river system (Chukotka), confined to the subperiphery of the range, where the most differentiated from the others. The possible reasons for the discrepancies and high divergence of the Palana River and the Okhota River sockeye salmon populations, inferred from the SNP markers analysis, are discussed.


sockeye salmon single nucleotide polymorphism (SNP) microsatellites population differentiation population structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salmenkova, E.A., Molecular genetic bases of adaptation processes and approaches to their analysis, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 82–88. Scholar
  2. 2.
    Fraser, D.I., Weir, L.K., Bernatchez, L., et al., Extent and scale of local adaptation in salmonid: review and meta-analysis, Heredity, 2011, vol. 106, pp. 406–420.CrossRefGoogle Scholar
  3. 3.
    Ackerman, M.W., Seeb, L.W., Seeb, J.E., and Templin, W.D., Landscape heterogeneity and local adaptation define the spatial genetic structure of Pacific salmon in a pristine environment, Conserv. Genet., 2013, vol. 14, no. 2, pp. 483–498.CrossRefGoogle Scholar
  4. 4.
    Vasemagi, A. and Primmer, C.R., Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies, Mol. Ecol., 2005, vol. 14, pp. 3623–3642.CrossRefPubMedGoogle Scholar
  5. 5.
    Nielsen, E.E., Hemmer-Hansen, J., Larsen, P.F., and Bekkevold, D., Population genomics of marine fishes: identifying adaptive variation in space and time, Mol. Ecol., 2009, vol. 18, pp. 3128–3150.CrossRefPubMedGoogle Scholar
  6. 6.
    Khrustaleva, A.M., Gritsenko, O.F., and Klovach, N.V., Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula, Russ. J. Genet., 2013, vol. 49, no. 11, pp. 1155–1167.CrossRefGoogle Scholar
  7. 7.
    Khrustaleva, A.M., Klovach, N.V., Gritsenko, O.F., and Sib, D.E., Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism, Russ. J. Genet., 2014, vol. 50, no. 7, pp. 736–748. Scholar
  8. 8.
    Khrustaleva, A.M., Klovach, N.V., Vedishcheva, E.V., and Sib, Dzh.E., Genetic differentiation of sockeye salmon Oncorhynchus nerka from Kamchatka River basin and the lake—river systems of the west coast of the Bering sea as inferred from data on single nucleotide polymorphism, Russ. J. Genet., 2015, vol. 51, no. 10, pp. 980–991.CrossRefGoogle Scholar
  9. 9.
    Habicht, C., Seeb, L.W., Myers, K.W., et al., Summer—fall distribution of stocks of immature sockeye salmon in the Bering Sea as revealed by single-nucleotide polymorphisms, Trans. Amer. Fish. Soc., 2010, vol. 139, no. 4, pp. 1171–1191.CrossRefGoogle Scholar
  10. 10.
    Smith, C.T., Elfstrom, C.M., Seeb, J.E., and Seeb, L.W., Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon, Mol. Ecol., 2005, vol. 14, pp. 4193–4203.CrossRefPubMedGoogle Scholar
  11. 11.
    Elfstrom, C.M., Smith, C.T., and Seeb, J.E., Thirtytwo single nucleotide polymorphism markers for highthroughput genotyping of sockeye salmon, Mol. Ecol. Notes, 2006, vol. 6, no. 4, pp. 1255–1259.CrossRefGoogle Scholar
  12. 12.
    Seeb, J.E., Pascal, C.E., Ramakrishnan, R., and Seeb, L.W., SNP genotyping by the 5'-nuclease reaction: advances in high throughput genotyping with non-model organisms, in Methods in Molecular Biology: Single Nucleotide Polymorphisms, Komar, A., Ed., Human., 2009, pp. 277–292.CrossRefGoogle Scholar
  13. 13.
    Khrustaleva, A.M., Kompleksnyi metod differentsiatsii nerki (Oncorhynchus nerka) aziatskikh stad (Complex Method for Differentiation of Sockeye Salmon (Oncorhynchus nerka) Asian Stocks), Moscow: Vserossiiskii Nauchno-Issledovatel’skii Institut Rybnogo Khozyaistva i Okeanografii, 2007.Google Scholar
  14. 14.
    Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., and Shipley, P., MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, pp. 535–538.CrossRefGoogle Scholar
  15. 15.
    Chapuis, M.P. and Estoup, A., Microsatellite null alleles and estimation of population differentiation, Mol. Biol. Evol., 2007, vol. 24, no. 3, pp. 621–631.CrossRefPubMedGoogle Scholar
  16. 16.
    Felsenstein, J., PHYLIP—Phylogeny Inference Package (Version 3.2), Cladistics, 1989, vol. 5, pp. 164–166.Google Scholar
  17. 17.
    Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Earl, D.A. and Von Holdt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Res., 2012, vol. 4, no. 2, pp. 359–361.CrossRefGoogle Scholar
  19. 19.
    Khrustaleva, A.M., Phylography of Asian sockeye salmon Oncorhynchus nerka according to the variation of mitochondrial locus of the SNP: scenarios of postglacial species distribution over the Pacific Asian coast, Izv. Tikhookean. Inst. Rybovod. Okeanogr., 2016, vol. 186, pp. 93–106.Google Scholar
  20. 20.
    Zhivotovsky, L.A., Relationships between Wright’s FST and FIS statistics in a context of Wahlund effect, J. Hered., 2015, vol. 106, no. 3, pp. 306–309.CrossRefPubMedGoogle Scholar
  21. 21.
    Bugaev, V.F., Milovskaya, L.V., Lepskaya, E.V., et al., The study of sockeye salmon Oncorhynchus nerka of Palansky Lake 1990–2001 (northwestern Kamchatka), Izv. Tikhookean. Inst. Rybovod. Okeanogr., 2002, vol. 130, pp. 777–791.Google Scholar
  22. 22.
    Wood, C.C., Riddell, B.E., and Rutherford, D.T., Alternative juvenile life histories of sockeye salmon (Oncorhynchus nerka) and their contribution to production in the Stikine River, northern British Columbia, Sockeye Salmon (Oncorhynchus nerka) Population Biology and Future Management, Smith, H.D., Margolis, L., and Wood, C.C., Eds., in Can. Spec. Publ. Fish. Aquat. Sci., 1987, pp. 12–21.Google Scholar
  23. 23.
    Cristescu, R., Sherwin, W.B., Handasyde, K., et al., Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure, Conserv. Genet., 2010, vol. 11, pp. 1043–1049.CrossRefGoogle Scholar
  24. 24.
    Luikart, G., Allendorf, F.W., Cornuet, J.M., et al., Distortion of allele frequency distributions provides a test for recent population bottlenecks, J. Hered., 1998, vol. 89, no. 3, pp. 238–247.CrossRefPubMedGoogle Scholar
  25. 25.
    Chereshnev, I.A., Biogeografiya presnovodnykh ryb Dal’nego Vostoka Rossii (Biogeography of Freshwater Fish of the Far East of Russia), Vladivostok: Dal’nauka, 1998.Google Scholar
  26. 26.
    Khrustaleva, A.M., Volkov, A.A., Rastorguev, S.M., and Uglova, T.Yu., Reconstruction of post-glacial settlement of Asian sockeye salmon Oncorhynchus nerka, Tr. Vseross. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 161, pp. 65–77.Google Scholar
  27. 27.
    Beacham, T.D., Varnavskaya, N.V., and McIntosh, B., Population structure of sockeye salmon from Russia determined with microsatellite DNA variation, Trans. Am. Fish. Soc., 2006, vol. 135, pp. 97–109.CrossRefGoogle Scholar
  28. 28.
    Streelman, J.T. and Kocher, T.D., Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia, Physiol. Genomics, 2002, vol. 9, no. 1, pp. 1–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Bugaev, V.F., Bugaev, A.V., and Dubynin, V.A., Age composition of commercial stocks of sockeye salmon, Oncorhynchus nerka in water bodies of the eastern coast of Kamchatka and adjacent territories, Sokhranenie bioraznoobraziya Kamchatki i prilegayushchikh morei (Biodiversity Conservation of Kamchatka and Adjacent Seas) (Proc. 7th Sci. Conf.), Petropavlovsk-Kamchatskii: Kamchatpres., 2006, pp. 15–40.Google Scholar
  30. 30.
    Nikulin, O.A., Reproduction of red Oncorhynchus nerka (Walb.) in the Okhota River basin, Tr. Vseross. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1975, vol. CVI, pp. 97–105.Google Scholar
  31. 31.
    Gomez-Uchida, D., Seeb, J.E., Smith, M.J., et al., Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon populations, BMC Evol. Biol., 2011, vol. 11, p. 48. Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • A. M. Khrustaleva
    • 1
  • N. V. Klovach
    • 1
  • J. E. Seeb
    • 2
  1. 1.All-Russia Federal Research Institute of Fisheries and Oceanography (VNIRO)MoscowRussia
  2. 2.School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations