Advertisement

Russian Journal of Genetics

, Volume 53, Issue 9, pp 982–987 | Cite as

Prevalent function of genome loci associated with development of multiple sclerosis as revealed by GWAS and eQTL analysis

  • P. A. Bykadorov
  • N. Yu. Oparina
  • M. V. Fridman
  • V. Yu. Makeev
General Genetics

Abstract

We studied genome distribution of single-nucleotide polymorphisms (SNP) associated with development of multiple sclerosis and identified genome segments enriched in such polymorphisms. Some SNPs observed in identified segments are also local or distal eQTLs (expression quantitative trait loci) for a number of genes expressed in the blood or the nervous system. We analyzed lists of genes expression of which depends on these eQTLs, separately for the blood and the nervous system, and identified GO functions overrepresented in such gene lists. An antigen processing and presentation via MHC class II appeared to be the main gene functions either in the blood or in the nervous system. We identified a set of SNPs genetically linked with at least three SNPs associated with multiple sclerosis in GWAS, which includes eQTLs for all overrepresented functions. These SNPs and genes are located in a rather short locus on chromosome 14 presumably containing IGHG genes. SNPs from this genome segment affect expression of the HLA-DOB, HLA-DQA1, HLA-DQA2, and HLA-DQB1 genes both in the blood and in the nervous system. The results we obtained made it possible to suggest the mechanisms of multiple sclerosis development.

Keywords

multiple sclerosis GWAS eQTL prevalent functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maurano, M.T., Humbert, R., Rynes, E., et al., Systematic localization of common disease-associated variation in regulatory DNA, Science, 2012, vol. 337, no. 6099, pp. 1190–1195. doi 10.1126/science.1222794CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gusev, A., Lee, S.H., Trynka, G., et al., Schizophrenia Working Group of the Psychiatric Genomics Consortium: partitioning heritability of regulatory and celltype-specific variants across 11 common diseases, Am. J. Hum. Genet., 2014, vol. 95, no. 5, pp. 535–552. doi 10.1016/j.ajhg.2014.10.004CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Farh, K.K., Marson, A., Zhu, J., et al., Genetic and epigenetic fine mapping of causal autoimmune disease variants, Nature, 2015, vol. 518, no. 7539, pp. 337–343. doi 10.1038/nature13835CrossRefPubMedGoogle Scholar
  4. 4.
    Lawrenson, K., Iversen, E.S., Tyrer, J., et al., Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer, Carcinogenesis, 2015, vol. 36, no. 11, pp. 1341–1353. doi 10.1093/carcin/bgv138CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hormozdiari, F., Kostem, E., Kang, E.Y., et al., Identifying causal variants at loci with multiple signals of association, Genetics, 2014, vol. 198, no. 2, pp. 497–508. doi 10.1534/genetics.114.167908CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bochdanovits, Z., Simón-Sánchez, J., Jonker, M., et al., Accurate prediction of a minimal region around a genetic association signal that contains the causal variant, Eur. J. Hum. Genet., 2014, vol. 22, no. 2, pp. 238–242. doi 10.1038/ejhg.2013.115CrossRefPubMedGoogle Scholar
  7. 7.
    Oksenberg, J.R. and Baranzini, S.E., Multiple sclerosis genetics–is the glass half full, or half empty? Nat. Rev. Neurol., 2010, vol. 6, no. 8, pp. 429–437. doi 10.1038/nrneurol.2010.91CrossRefPubMedGoogle Scholar
  8. 8.
    International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer, S., Hellenthal, G., Pirinen, M., et al., Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis, Nature, 2011, vol. 476, no. 7359, pp. 214–219. doi 10.1038/nature10251Google Scholar
  9. 9.
    Lin, X., Deng, F.Y., Mo, X.B., et al., Functional relevance for multiple sclerosis-associated genetic variants, Immunogenetics, 2015, vol. 67, no. 1, pp. 7–14. doi 10.1007/s00251-014-0803-4CrossRefPubMedGoogle Scholar
  10. 10.
    Albert, F.W. and Kruglyak, L., The role of regulatory variation in complex traits and disease, Nat. Rev. Genet., 2015, vol. 16, no. 4, pp. 197–212.CrossRefPubMedGoogle Scholar
  11. 11.
    Ward, L.D. and Kellis, M., HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D877–D881. doi 10.1093/nar/gkv1340CrossRefPubMedGoogle Scholar
  12. 12.
    Battle, A. and Montgomery, S.B., Determining causality and consequence of expression quantitative trait loci, Hum. Genet., 2014, vol. 133, no. 6, pp. 727–735. doi 10.1007/s00439-014-1446-0CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhu, Z., Zhang, F., Hu, H., et al., Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets, Nat. Genet., 2016, vol. 48, no. 5, pp. 481–487. doi 10.1038/ng.3538CrossRefPubMedGoogle Scholar
  14. 14.
    Leslie, R., O’Donnell, C.J., and Johnson, A.D., GRASP: analysis of genotype–phenotype results from 1390 genome-wide association studies and corresponding open access database, Bioinformatics, 2014, vol. 30, no. 12, i185–i194. doi 10.1093/bioinformatics/btu273CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sherman, B.T., Huang da, W., Tan, Q., et al., DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis, BMC Bioinform., 2007, vol. 8, p. 426.CrossRefGoogle Scholar
  16. 16.
    Ashburner, M., Ball, C.A., Blake, J.A., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 2000, vol. 25, no. 1, pp. 25–29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Goris, A., Pauwels, I., Gustavsen, M.W., et al., Genetic variants are major determinants of CSF antibody levels in multiple sclerosis, Brain, 2015, vol. 138, part 3, pp. 632–643. doi 10.1093/brain/awu405CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Buck, D., Albrecht, E., Aslam, M., et al., Genetic variants in the immunoglobulin heavy chain locus are associated with the IgG index in multiple sclerosis, Ann. Neurol., 2013, vol. 73, no. 1, pp. 86–94. doi 10.1002/ana.23749CrossRefPubMedGoogle Scholar
  19. 19.
    Kumar, A., Melis, P., Genna, V., et al., Antigenic peptide molecular recognition by the DRB1-DQB1 haplotype modulates multiple sclerosis susceptibility, Mol. Biosyst., 2014, vol. 10, no. 8, pp. 2043–2054. doi 10.1039/c4mb00203bCrossRefPubMedGoogle Scholar
  20. 20.
    Kumar, A., Cocco, E., Atzori, L., et al., Structural and dynamical insights on HLA-DR2 complexes that confer susceptibility to multiple sclerosis in Sardinia: a molecular dynamics simulation study, PLoS One, 2013, vol. 8, no. 3. e59711. doi 10.1371/journal.pone.0059711CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Getahun, A. and Heyman, B., IgG-and IgE-mediated antigen presentation on MHC class II, Immunol. Lett., 2004, vol. 92, nos. 1–2, pp. 33–38. doi 10.1016/j.imlet.2003.09.015CrossRefPubMedGoogle Scholar
  22. 22.
    Abdul-Majid, K.B., Stefferl, A., Bourquin, C., et al., Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis, Scand. J. Immunol., 2002, vol. 55, no. 1, pp. 70–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Dhib-Jalbut, S., Kufta, C.V., Flerlage, M., et al., Adult human glial cells can present target antigens to HLArestricted cytotoxic T-cells, J. Neuroimmunol., 1990, vol. 29, nos. 1–3, pp., 203–211.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • P. A. Bykadorov
    • 1
  • N. Yu. Oparina
    • 2
  • M. V. Fridman
    • 1
  • V. Yu. Makeev
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden

Personalised recommendations