Russian Journal of Genetics

, Volume 53, Issue 4, pp 483–489 | Cite as

Expression of the DNA methyltransferase genes in silver foxes experimentally selected for domestication

  • Yu. E. Herbeck
  • A. R. Khantemirova
  • E. V. Antonov
  • N. I. Goncharova
  • R. G. Gulevich
  • D. V. Shepeleva
  • L. N. Trut
Animal Genetics


Animal domestication is a model of a rapid evolutionary process. In experimental fox domestication, the time required for the emergence and fixation of specific evolutionary changes was reduced from thousands to tens of years, compared to historical domestication. Tame foxes were obtained by extreme selective breeding for emotionally positive response toward humans. Unselected foxes, as well as foxes bred for enhanced aggressiveness to humans were used as control. Epigenetic regulation of gene expression is considered as one of the possible mechanisms of rapid evolution. In this study, expression of DNA methyltransferase genes, DNMT1 and DNMT3A, was investigated. It was demonstrated that, in tame foxes, the level of DNMT3A gene expression in the prefrontal cortex, hippocampus, and spleen was increased by more than 2 times in comparison with aggressive and unselected foxes. At the same time, the DNMT1 expression level did not differ among the studied groups of animals. A possible reason for the differences found in the DNMT3A expression could be the changes in the level and metabolism of methionine, which serves as a donor of methyl groups during DNA methylation. However, this study showed that there were no differences in the serum methionine levels between tame, unselected, and aggressive foxes. Thus, the data support the hypothesis that selection for positive emotional response toward humans affected the DNA methylation machinery.


domestication selection for behavior DNMT3A methionine epigenetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belyaev, D.K., Domestication of animals, Sci. J., 1969, vol. 5, pp. 47–52.Google Scholar
  2. 2.
    Belyaev, D.K., Destabilizing selection as a factor of domestication, in Genetika i blagosostoyanie chelovechestva (Genetics and the Welfare of Humankind), Moscow: Nauka, 1981, pp. 53–66.Google Scholar
  3. 3.
    Trut, L.N., Plyusnina, I.Z., and Oskina, I.N., An experiment on fox domestication and debatable issues of evolution of the dog, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 644–655.CrossRefGoogle Scholar
  4. 4.
    Trut, L.N., Herbek, Yu.E., Kharlamova, A.V., et al., Fox domestication: molecular mechanisms involved in selection for behavior, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 2, pp. 226–233.Google Scholar
  5. 5.
    Trut, L., Oskina, I., and Kharlamova, A., Animal evolution during domestication: the domesticated fox as a model, BioEssays, 2009, vol. 31, no. 3, pp. 349–360. doi 10.1002/bies.200800070CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Oskina, I.N., Herbek, Yu.E., Shikhevich, S.G., et al., Changing in the hypothalamic-pituitary-adrenal axis and immune systems during the selection of animals for domestication behavior, Inf. Vestn. Vavilovskogo O-va Genet. Sel., 2008, vol. 12, nos. 1–2, pp. 39–49.Google Scholar
  7. 7.
    Vaido, A.I., Dyuzhikova, N.A., Shiryaeva, N.V., et al., Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress, Russ. J. Genet., 2009, vol. 45, no. 3, pp. 298–303.CrossRefGoogle Scholar
  8. 8.
    Dulac, C., Brain function and chromatin plasticity, Nature, 2010, vol. 465, pp. 728–735. doi 10.1038/nature09231CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Turecki, G. and Meaney, M.J., Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review, Biol. Psychiat., 2016, vol. 79, no. 2, pp. 87–96. doi 10.1016/j.biopsych. 2014.11.022CrossRefPubMedGoogle Scholar
  10. 10.
    Weaver, I.C.G., Cervoni, N., Champagne, F.A., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, vol. 7, no. 8, pp. 847–854. doi 10.1038/nn1276CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang, T.Y., Labonté, B., Wen, X.L., et al., Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans, Neuropsychopharmacology, 2013, vol. 38, no. 1, pp. 111–123. doi 10.1038/npp.2012. 149CrossRefPubMedGoogle Scholar
  12. 12.
    Wang, D., Szyf, M., Benkelfat, C., et al., Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression, PLoS One, 2012, vol. 7, no. 6. e39501. doi 10.1371/journal.pone.0039501CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Miller, C.A. and Sweatt, J.D., Covalent modification of DNA regulates memory formation, Neuron, 2007, vol. 53, no. 6, pp. 857–869. doi 10.1016/j.neuron.2007.02.022CrossRefPubMedGoogle Scholar
  14. 14.
    Gräff, J. and Mansuy, I.M., Epigenetic codes in cognition and behaviour, Behav. Brain. Res., 2008, vol. 192, no. 1, pp. 70–87. doi 10.1016/j.bbr.2008.01.021CrossRefPubMedGoogle Scholar
  15. 15.
    McGowan, P.O., Sasaki, A., D’Alessio, A.C., et al., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse, Nat. Neurosci., 2009, vol. 12, no. 3, pp. 342–348. doi 10.1038/nn.2270CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jakovcevski, M. and Akbarian, S., Epigenetic mechanisms in neurological disease, Nat. Med., 2012, vol. 18, no. 8, pp. 1194–1204. doi 10.1038/nm.2828CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Grayson, D.R. and Guidotti, A., The dynamics of DNA methylation in schizophrenia and related psychiatric disorders, Neuropsychopharmacology, 2013, vol. 38, no. 1, pp. 138–166. doi doi 10.1038/npp.2012.125CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, T.Y., Hellstrom, I.C., Bagot, R.C., et al., Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus, J. Neurosci., 2010, vol. 30, no. 39, pp. 13130–13137. doi 10.1523/JNEUROSCI.1039-10.2010CrossRefPubMedGoogle Scholar
  19. 19.
    Nätt, D., Rubin, C.J., Wright, D., et al., Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens, BMC Genomics, 2012, vol. 13, p. 59. doi 10.1186/1471-2164-13-59CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    LaPlant, Q., Vialou, V., Iii, H.E.C., et al., Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens, Nat. Neurosci., 2010, vol. 13, no. 9, pp. 1137–1143. doi 10.1038/nn.2619CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Anier, K., Malinovskaja, K., Pruus, K., et al., Maternal separation is associated with DNA methylation and behavioural changes in adult rats, Eur. Neuropsychopharmacol., 2014, vol. 24, no. 3, pp. 459–468. doi 10.1016/j.euroneuro.2013.07.012CrossRefPubMedGoogle Scholar
  22. 22.
    Jablonka, E. and Raz, G., Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution, Q. Rev. Biol., 2009, vol. 84, no. 2, pp. 131–176. doi 10.1086/598822CrossRefPubMedGoogle Scholar
  23. 23.
    Danchin, É., Charmantier, A., Champagne, F.A., et al., Beyond DNA: integrating inclusive inheritance into an extended theory of evolution, Nat. Rev. Genet., 2011, vol. 12, no. 7, pp. 475–486. doi 10.1038/nrg3028CrossRefPubMedGoogle Scholar
  24. 24.
    Ledón-Rettig, C.C., Richards, C.L., and Martin, L.B., Epigenetics for behavioral ecologists, Behav. Ecol., 2013, vol. 24, no. 2, pp. 311–324. doi 10.1093/beheco/ ars145CrossRefGoogle Scholar
  25. 25.
    Danchin, É. and Pocheville, A., Inheritance is where physiology meets evolution, J. Physiol., 2014, vol. 592, no. 11, pp. 2307–2317. doi 10.1113/jphysiol.2014. 272096CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Belyaev, D.K., Destabilizing selection as a factor in variation of animals under domestication, Priroda (Moscow, Russ. Fed.) 1979, no. 2, pp. 36–45.Google Scholar
  27. 27.
    Gerbek, Yu.E., Os’kina, I.N., Gulevich, R.G., and Plyusnina, I.Z., Effects of maternal methyl-supplement diet on hippocampal glucocorticoid receptor mRNA expression in rats selected for behavior, Cytol. Genet., 2010, vol. 44, no. 2, pp. 108–113. doi 10.3103/S0095452710020064CrossRefGoogle Scholar
  28. 28.
    Belyaev, D.K., Ruvinskii, A.O., and Trut, L.N., The value of the inherited activation and inactivation of genes in animal domestication, Genetica (Moscow), 1979, vol. 15, no. 11, pp. 2033–2055.Google Scholar
  29. 29.
    Plyusnina, I. and Oskina, I., Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans, Physiol. Behav., 1997, vol. 61, no. 3, pp. 381–385. doi 10.1016/ S0031-9384(96)00445-3CrossRefPubMedGoogle Scholar
  30. 30.
    Plyusnina, I.Z., Oskina, I.N., Tibeikina, M.A., and Popova, N.K., Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human, Behav. Genet., 2009, vol. 39, no. 2, pp. 202–212. doi 10.1007/s10519-008-9248-6CrossRefPubMedGoogle Scholar
  31. 31.
    Albert, F.W., Shchepina, O., Winter, C., et al., Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans, Horm. Behav., 2008, vol. 53, no. 3, pp. 413–421. doi 10.1016/j.yhbeh.2007.11.010CrossRefPubMedGoogle Scholar
  32. 32.
    Tremolizzo, L., Carboni, G., Ruzicka, W.B., et al., An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 26, pp. 17095–17100. doi 10.1073/pnas.262658999CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Carlin, J., George, R., and Reyes, T.M., Methyl donor supplementation blocks the adverse effects of maternal high fat diet on offspring physiology, PLoS One, 2013, vol. 8, no. 5. e63549. doi 10.1371/journal.pone. 0063549CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Giudicelli, F., Brabant, A.-L., Grit, I., et al., Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet, PLoS One, 2013, vol. 8, no. 7. e68268. doi 10.1371/journal.pone.0068268CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ishii, D., Matsuzawa, D., Matsuda, S., et al., Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice, PLoS One, 2014, vol. 9, no. 8. e105750. doi 10.1371/journal. pone.0105750CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McGowan, P.O., Meaney, M.J., and Szyf, M., Diet and the epigenetic (re)programming of phenotypic differences in behavior, Brain Res., 2008, no. 1237, pp. 12–24. doi 10.1016/j.brainres.2008.07.074CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Prasolova, L.A., Os’kina, I.N., Plyusnina, I.Z., and Trut, L.N., Maternal methyl supplements affect the phenotypic variation of the agouti gene in the offspring of rats with different behavioral types, Russ. J. Genet., 2009, vol. 45, no. 5, pp. 587–592.CrossRefGoogle Scholar
  38. 38.
    Huang, S., Slomianka, L., Farmer, A.J., et al., Selection for tameness, a key behavioral trait of domestication, increases adult hippocampal neurogenesis in foxes, Hippocampus, 2015, vol. 25, no. 8, pp. 963–975. doi 10.1002/hipo.22420CrossRefPubMedGoogle Scholar
  39. 39.
    Ye, J., Coulouris, G., Zaretskaya, I., et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics, 2012, vol. 13, p. 134. doi 10.1186/1471-2105-13-134CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kukekova, A.V., Johnson, J.L., Teiling, C., et al., Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes), BMC Genomics, 2011, vol. 12, p. 482. doi 10.1186/1471-2164-12-482CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schwarz, E.L., Roberts, W.L., and Pasquali, M., Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection, Clin. Chim. Acta, 2005, vol. 354, nos. 1–2, pp. 83–90. doi 10.1016/j.cccn. 2004.11.016CrossRefPubMedGoogle Scholar
  42. 42.
    Abbott, N.J., Patabendige, A.A.K., Dolman, D.E.M., et al., Structure and function of the blood–brain barrier, Neurobiol. Dis., 2010, vol. 37, no. 1, pp. 13–25. doi 10.1016/j.nbd.2009.07.030CrossRefPubMedGoogle Scholar
  43. 43.
    Guo, J.U., Su, Y., Shin, J.H., et al., Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain, Nat. Neurosci., 2014, vol. 17, no. 2, pp. 215–222. doi 10.1038/nn.3607CrossRefPubMedGoogle Scholar
  44. 44.
    Oliveira, A.M.M., Hemstedt, T.J., and Bading, H., Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities, Nat. Neurosci., 2012, vol. 15, no. 8, pp. 1111–1113. doi 10.1038/nn.3151CrossRefPubMedGoogle Scholar
  45. 45.
    Chen, B.-F. and Chan, W.-Y., The de novo DNA methyltransferase DNMT3A in development and cancer, Epigenetics, 2014, vol. 9, no. 5, pp. 669–677. doi 10.4161/epi.28324CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hunter, R.G. and McEwen, B.S., Stress and anxiety across the lifespan: structural plasticity and epigenetic regulation, Epigenomics, 2013, vol. 5, no. 2, pp. 177–194.CrossRefPubMedGoogle Scholar
  47. 47.
    Morris, M.J., Adachi, M., Na, E.S., and Monteggia, L.M., Selective role for DNMT3a in learning and memory, Neurobiol. Learn. Mem., 2014, vol. 115, pp. 30–37. doi 10.1016/j.nlm.2014.06.005CrossRefPubMedGoogle Scholar
  48. 48.
    Nguyen, S., Meletis, K., Fu, D., et al., Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan, Dev. Dyn., 2007, vol. 236, no. 6, pp. 1663–1676. doi 10.1002/dvdy.21176CrossRefPubMedGoogle Scholar
  49. 49.
    Vanyushin, B.F. and Romanenko, E.B., The change of rat DNA methylation in ontogenesis and under the influence of hydrocortisone, Biokhimiya (Moscow), 1979, vol. 44, no. 1, pp. 78–85.Google Scholar
  50. 50.
    Elliott, E., Manashirov, S., Zwang, R., et al., Dnmt3a in the medial prefrontal cortex regulates anxiety-like behavior in adult mice, J. Neurosci., 2016, vol. 36, no. 3, pp. 730–740. doi 10.1523/JNEUROSCI.0971- 15.2016CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu, Q., Wang, L., Zhang, Y., et al., Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy, J. Mol. Neurosci., 2012, vol. 46, no. 2, pp. 420–426. doi 10.1007/s12031-011-9602-7CrossRefPubMedGoogle Scholar
  52. 52.
    Kolpakov, V.G., Barykina, N.N., Alekhina, T.A., and Ponomarev, I.Y., Some Genetic Animal Models for Comparative Psychology and Biological Psychiatry, Novosibirsk: Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 1996.Google Scholar
  53. 53.
    Belyaev, D.K., Genetics, society, personality, in Problemy genetiki i teorii evolyutsii (Challenges in Genetics and Evolutionary Theory), Novosibirsk: Nauka, 1991, pp. 43–51.Google Scholar
  54. 54.
    Wrangham, R. and Pilbeam, D., African apes as time machines, in All Apes Great and Small, vol. 1: African Apes, New York: Kluwer, 2001, pp. 5–17.Google Scholar
  55. 55.
    Allis, D., Jenuwein, T., and Reinberg, D., Overview and concepts, in Epigenetics, Allis, D., Jenuwein, T., Reinberg, D., and Caparros, M.L., Eds., Cold Spring Harbor: Cold Spring Harbor Laboratory, 2007.Google Scholar
  56. 56.
    Di Ruscio, A., Ebralidze, A.K., Benoukraf, T., et al., DNMT1-Interacting RNAs block gene-specific DNA methylation, Nature, 2013, vol. 503, pp. 371–376. doi doi 10.1038/nature12598CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Marchal, C. and Miotto, B., Emerging concept in DNA methylation: role of transcription factors in shaping DNA methylation patterns, J. Cell. Physiol., 2015, vol. 230, no. 4, pp. 743–751. doi 10.1002/jcp.24836CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • Yu. E. Herbeck
    • 1
  • A. R. Khantemirova
    • 1
    • 2
  • E. V. Antonov
    • 1
  • N. I. Goncharova
    • 2
  • R. G. Gulevich
    • 1
  • D. V. Shepeleva
    • 1
  • L. N. Trut
    • 1
  1. 1.Federal Research Center Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of Cytology and GeneticsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations