Russian Journal of Genetics

, Volume 52, Issue 9, pp 985–992 | Cite as

Mathematical models in genetics

Mathematical Models and Methods
  • 80 Downloads

Abstract

In this study, we present some of the basic ideas of population genetics. The founders of population genetics are R.A. Fisher, S. Wright, and J. B.S. Haldane. They, not only developed almost all the basic theory associated with genetics, but they also initiated multiple experiments in support of their theories. One of the first significant insights, which are a result of the Hardy–Weinberg law, is Mendelian inheritance preserves genetic variation on which the natural selection acts. We will limit to simple models formulated in terms of differential equations. Some of those differential equations are nonlinear and thus emphasize issues such as the stability of the fixed points and time scales on which those equations operate. First, we consider the classic case when selection acts on diploid locus at which wу can get arbitrary number of alleles. Then, we consider summaries that include recombination and selection at multiple loci. Also, we discuss the evolution of quantitative traits. In this case, the theory is formulated in respect of directly measurable quantities. Special cases of this theory have been successfully used for many decades in plants and animals breeding.

Keywords

genetics mathematical models mathematical genetics bioinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karlin, S., Some mathematical models of population genetics, Am. Math. Mon., 1972, vol. 79, no. 7 pp. 699–739.CrossRefGoogle Scholar
  2. 2.
    Lange, K., Applied Probability, New York: Springer-Verlag, 2003.Google Scholar
  3. 3.
    Ignatieva, E.V., Podkolodnaya, O.A., Orlov, Yu.L. et al., Regulatory genomics: combined experimental and computational approaches, Russ. J. Genet., 2015, vol. 51, no. 4 pp. 334–352.CrossRefGoogle Scholar
  4. 4.
    Markel, A.L., Evolutionary and genetic roots of hypertensive disease, Russ. J. Genet., 2015, vol. 51, no. 6 pp. 545–557.CrossRefGoogle Scholar
  5. 5.
    Cavalli-Sforza, L.L. and Bodmer, W.F., The Genetics of Human Populations, San Francisco: Freeman, 1971.Google Scholar
  6. 6.
    Crow, J.F. and Kimura, M., An Introduction to Population Genetics Theory, New York: Harper and Row, 1970.Google Scholar
  7. 7.
    Elandt-Johnson, R.C., Probability Models and Statistical Methods in Genetics, New York: Wiley, 1971.Google Scholar
  8. 8.
    Hartl, D.L. and Clark, A.G., Principles of Population Genetics, Sunderland: Sinauer Assoc., 1989.Google Scholar
  9. 9.
    Jacquard, A., The Genetic Structure of Populations, New York: Springer-Verlag, 1974.CrossRefGoogle Scholar
  10. 10.
    Nagylaki, T., Introduction to Theoretical Population Genetics, Berlin: Springer-Verlag, 1992.CrossRefGoogle Scholar
  11. 10.
    Nagylaki, T., Introduction to Theoretical Population Genetics, Berlin: Springer-Verlag, 1992.CrossRefGoogle Scholar
  12. 11.
    Kanzafarova, R.F., Kazantseva, A.V. and Khusnutdinova, E.K., Genetic and environmental aspects of mathematical disabilities, Russ. J. Genet., 2015, vol. 51, no. 3 pp. 223–230.CrossRefGoogle Scholar
  13. 12.
    Li, C.C., First Course in Population Genetics, Pacific Grove: Boxwood Press, 1976.Google Scholar
  14. 13.
    Nesse, R.M., When Bad Genes Happen to Good People, Technology Review, 1995.Google Scholar
  15. 14.
    Bennet, J.H., On the theory of random mating, Ann. Eugen., 1952, vol. 17, no. 1 pp. 311–317.CrossRefGoogle Scholar
  16. 15.
    Geiringer, H., Further remarks on linkage theory in Mendelian heredity, Ann. Math. Stat., 1945, vol. 16, no. 4 pp. 390–393.CrossRefGoogle Scholar
  17. 16.
    Lange, K., A stochastic model for genetic linkage equilibrium, Theor. Pop. Biol., 1993, vol. 44, no. 2 pp. 129–148.CrossRefGoogle Scholar
  18. 17.
    Efremov, V.V., Equilibrium between genetic drift and migration at various mutation rates: simulation analysis, Russ. J. Genet., 2005, vol. 41, no. 9 pp. 1055–1058.CrossRefGoogle Scholar
  19. 18.
    Trifonova, E.A., Spiridonova, M.G. and Stepanov, V.A., Genetic diversity and the structure of linkage disequilibrium in the methylenetetrahydrofolate reductase locus, Russ. J. Genet., 2008, vol. 44, no. 10 pp. 1224–1232.CrossRefGoogle Scholar
  20. 19.
    Zhdanova, O.L. and Frisman, E.Ya., Modelling of selection acting upon the pleioptropic locus in a population with two age classes, Russ. J. Genet., 2014, vol. 50, no. 8 pp. 879–890.CrossRefGoogle Scholar
  21. 20.
    Bürger, R., Some Mathematical Models in Evolutionary Genetics, Basel: Springer-Verlag, 2011, pp. 67–89.Google Scholar
  22. 21.
    Akin, E., The Geometry of Population Genetics, New York: Springer-Verlag, 1979.CrossRefGoogle Scholar
  23. 22.
    Akin, E., Cycling in simple genetic systems, J. Math. Biol., 1982, vol. 13, no. 3 pp. 305–324.CrossRefGoogle Scholar
  24. 23.
    Hastings, A., Stable cycling in discrete-time genetic models, Proc. Natl. Acad. Sci. U.S.A., 1981, vol. 78, no. 11 pp. 7224–7225.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 24.
    Hofbauer, J. and Iooss, G., A Hopf bifurcation theorem of difference equations approximating a differential equation, Monatsh. Math., 1984, vol. 98, no. 2 pp. 99–113.CrossRefGoogle Scholar
  26. 25.
    Nagylaki, T., Error bounds for the fundamental and secondary theorems of natural selection, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, no. 6 pp. 2402–2406.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 26.
    Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon Press, 1930.CrossRefGoogle Scholar
  28. 27.
    Shahshahani, S., A New Mathematical Framework for the Study of Linkage and Selection, Providence: Amer. Math. Soc., 1979.Google Scholar
  29. 28.
    Svirezhev, Yu.M., Optimality principles in population genetics, in Studies in Theoretical Genetics, Novosibirsk: Inst. Tsitol. Genet., 1972, pp. 86–102.Google Scholar
  30. 29.
    Bürger, R., The Mathematical Theory of Selection, Recombination, and Mutation, Chichester: Wiley, 2000.Google Scholar
  31. 30.
    Burger, R., A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait, J. Math. Biol., 2005, vol. 50, no. 4 pp. 355–396.CrossRefPubMedGoogle Scholar
  32. 31.
    Schneider, K.A., A multilocus–multiallele analysis of frequency-dependent selection induced by intraspecific competition, J. Math. Biol., 2006, vol. 52, no. 4 pp. 483–523.CrossRefPubMedGoogle Scholar
  33. 32.
    Schneider, K.A., Long-term evolution of polygenic traits under frequency-dependent intraspecific competition, Theor. Popul. Biol., 2007, vol. 71, no. 3 pp. 342–366.CrossRefPubMedGoogle Scholar
  34. 33.
    Mackay, T.F.C., Quantitative trait loci in Drosophila, Nat. Rev. Genet., 2001 vol. 2, pp. 11–20.CrossRefPubMedGoogle Scholar
  35. 34.
    Barton, N.H. and Keightley, P.D., Understanding quantitative genetic variation, Nat. Rev. Genet., 2002, vol. 3, pp. 11–21.CrossRefPubMedGoogle Scholar
  36. 35.
    Lande, R., Quantitative genetic analysis of multivariate evolution applied to brain: body size allometry, Evolution, 1979, vol. 33, no. 1, part 2, pp. 402–416.CrossRefGoogle Scholar
  37. 36.
    Barton, N.H. and Turelli, M., Adaptive landscapes, genetic distance and the evolution of quantitative characters, Genet. Res., 1987, vol. 49, no. 2 pp. 157–173.PubMedGoogle Scholar
  38. 37.
    Barton, N.H. and Turelli, M., Natural and sexual selection on many loci, Genetics, 1991, vol. 127, no. 1 pp. 229–255.PubMedPubMedCentralGoogle Scholar
  39. 38.
    Turelli, M. and Barton, N.H., Dynamics of polygenic characters under selection, Theor. Pop. Biol., 1990, vol. 38, no. 1 pp. 1–57.CrossRefGoogle Scholar
  40. 39.
    Bürger, R., Moments, cumulants, and polygenic dynamics, J. Math. Biol., 1991, vol. 30, no. 2 pp. 199–213.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Cеnter for Advanced Bioinformatics ResearchSouth-West University “Neofit Rilski”BlagoevgradBulgaria

Personalised recommendations