Russian Journal of Genetics

, Volume 52, Issue 4, pp 343–361 | Cite as

Genetic control of circadian rhythms and aging

  • I. A. SolovyovEmail author
  • E. V. Dobrovol’skaya
  • A. A. Moskalev
Reviews and Theoretical Articles


The review establishes a link between a group of genes which are conserved in evolution and form a molecular oscillator responsible for generation of circadian rhythms and genetic determinants of aging including associated pathways of intracellular signaling. An analysis of mechanisms of development of agedependent pathologies is conducted from the viewpoint of circadian genetics. Systematic data of circadian gene expression studies in animals demonstrating different rates of aging from accelerated to negligible are presented.


aging circadian rhythms transcriptome age-related pathologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halberg, F., Cornélissen, G., Katinas, G., et al., Transdisciplinary unifying implications of circadian findings in the 1950s, J. Circadian Rhythms, 2003, vol. 1, no. 1, p. 2.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Aguilar-Arnal, L. and Sassone-Corsi, P., The circadian epigenome: how metabolism talks to chromatin remodeling, Curr. Opin. Cell Biol., 2013, vol. 25, no. 2, pp. 170–176.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Zhang, R., Lahens, N.F., Ballance, H.I., et al., A circadian gene expression atlas in mammals: implications for biology and medicine, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 45, pp. 16219–16224.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Laplante, M. and Sabatini, D.M., mTOR signaling in growth control and disease, Cell, 2012, vol. 149, no. 2, pp. 274–293.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Huang, H. and Tindall, D.J., Dynamic FoxO transcription factors, J. Cell Sci., 2007, vol. 120, no. 15, pp. 2479–2487.PubMedCrossRefGoogle Scholar
  6. 6.
    Zheng, X., Yang, Z., Yue, Z., et al., FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 40, pp. 15899–15904.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Spengler, M.L., Kuropatwinski, K.K., Comas, M., et al., Core circadian protein CLOCK is a positive regulator of NF-B-mediated transcription, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 37, pp. E2457–E2465.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Eckel-Mahan, K. and Sassone-Corsi, P., Metabolism and the circadian clock converge, Physiol. Rev., 2013, vol. 93, no. 1, pp. 107–135.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Duncan, M.J., Smith, J.T., Franklin, K.M., et al., Effects of aging and genotype on circadian rhythms, sleep, and clock gene expression in APPxPS1 knockin mice, a model for Alzheimer’s disease, Exp. Neurol., 2012, vol. 236, no. 2, pp. 249–258.Google Scholar
  10. 10.
    Johnson, P.H., Golden, S.S., Ishiura, M., and Kondo, T., Circadian clocks in prokaryotes, Mol. Microbiol., 1996, vol. 21, no. 1, pp. 5–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Loudon, A.S.I., Circadian biology: a 2.5 billion year old clock, Curr. Biol., 2012, vol. 22, no. 14, pp. R570–R571.PubMedCrossRefGoogle Scholar
  12. 12.
    Haldenby, S., White, M.F., and Allers, T., RecA family proteins in archaea: RadA and its cousins, Biochem. Soc. Trans., 2009, vol. 37, no. 1, p. 102.PubMedCrossRefGoogle Scholar
  13. 13.
    Hut, R.A. and Beersma, D.G.M., Evolution of timekeeping mechanisms: early emergence and adaptation to photoperiod, Philos. Trans., B, 2011, vol. 366, no. 1574, pp. 2141–2154.CrossRefGoogle Scholar
  14. 14.
    Kondo, T., Tsinoremas, N.F., Golden, S.S., et al., Circadian clock mutants of cyanobacteria, Science, 1994, vol. 266, no. 5188, pp. 1233–1236.PubMedCrossRefGoogle Scholar
  15. 15.
    Ishiura, M., Kutsuna, S., Aoki, S., et al., Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria, Science, 1998, vol. 281, no. 5382, pp. 1519–1523.PubMedCrossRefGoogle Scholar
  16. 16.
    Iwasaki, H., Taniguchi, Y., Ishiura, M., et al., Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria, EMBO J., 1999, vol. 18, no. 5, pp. 1137–1145.PubMedCrossRefGoogle Scholar
  17. 17.
    Mori, T., Williams, D.R., Byrne, M.O., et al., Elucidating the ticking of an in vitro circadian clockwork, PLoS Biol., 2007, vol. 5, no. 4. e93PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nishiwaki, T., Iwasaki, H., Ishiura, M., et al., Binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 1, pp. 495–499.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Xu, Y., Mori, T., and Johnson, P.H., Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC, EMBO J., 2003, vol. 22, no. 9, pp. 2117–2126.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Iwasaki, H., Nishiwaki, T., Kitayama, Y., et al., KaiAstimulated KaiC phosphorylation in circadian timing loops in cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 24, pp. 15788–15793.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Williams, S.B., Vakonakis, I., Golden, S.S., et al., Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 24, pp. 15357–15362.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nair, U., Ditty, J.L., Min, H., et al., Roles for sigma factors in global circadian regulation of the cyanobacterial genome, J. Bacteriol., 2002, vol. 184, no. 13, pp. 3530–3538.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Taniguchi, Y., Yamaguchi, A., Hijikata, A., et al., Two KaiA-binding domains of cyanobacterial circadian clock protein KaiC, FEBS Lett., 2001, vol. 496, no. 2, pp. 86–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, R.M. and Williams, S.B., Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 22, pp. 8564–8569.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Woelfle, M.A., Xu, Y., Qin, X., and Johnson, P.H., Circadian rhythms of superhelical status of DNA in cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 47, pp. 18819–18824.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vijayan, V., Zuzow, R., and O’Shea, E.K., Oscillations in supercoiling drive circadian gene expression in cyanobacteria, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 52, pp. 22564–22568.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mori, T. and Johnson, P.H., Independence of circadian timing from cell division in cyanobacteria, J. Bacteriol., 2001, vol. 183, no. 8, pp. 2439–2444.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Min, H., Liu, Y., Johnson, P.H., and Golden, S.S., Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942, J. Biol. Rhythms, 2004, vol. 19, no. 2, pp. 103–112.PubMedCrossRefGoogle Scholar
  29. 29.
    Rang, P.U., Peng, A.Y., and Chao, L., Temporal dynamics of bacterial aging and rejuvenation, Curr. Biol., 2011, vol. 21, no. 21, pp. 1813–1816.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, K., Loros, J.J., and Dunlap, J.P., Interconnected feedback loops in the Neurospora circadian system, Science, 2000, vol. 289, no. 5476, pp. 107–110.PubMedCrossRefGoogle Scholar
  31. 31.
    Baker, P.L., Loros, J.J., and Dunlap, J.P., The circadian clock of Neurospora crassa, FEMS Microbiol. Rev., 2012, vol. 36, no. 1, pp. 95–110.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fuller, K.K., Hurley, J.M., Loros, J.J., Dunlap, J.C., et al., 6 Photobiology and circadian clocks in Neurospora, in Fungal Genomics, Berlin: Springer-Verlag, 2014, pp. 121–148.CrossRefGoogle Scholar
  33. 33.
    Jeon, M., Gardner, H.F., Miller, E.A., et al., Similarity of the C. elegans developmental timing protein LIN-42 to circadian rhythm proteins, Science, 1999, vol. 286, no. 5442, pp. 1141–1146.PubMedCrossRefGoogle Scholar
  34. 34.
    Hasegawa, K., Saigusa, T., and Tamai, Y., Caenorhabditis elegans opens up new insights into circadian clock mechanisms, Chronobiol. Int., 2005, vol. 22, no. 1, pp. 1–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Tennessen, J.M., Gardner, H.F., Volk, M.L., et al., Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42, Dev. Biol., 2006, vol. 289, no. 1, pp. 30–43.PubMedCrossRefGoogle Scholar
  36. 36.
    Van der Linden, A.M., Beverly, M., Kadener, S., et al., Genome-wide analysis of light-and temperatureentrained circadian transcripts in Caenorhabditis elegans, PLoS Biol., 2010, vol. 8, no. 10, p. 2442.Google Scholar
  37. 37.
    Hardin, P.E., Molecular genetic analysis of circadian timekeeping in Drosophila, Adv. Genet., 2011, vol. 74, p. 141.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cyran, S.A., Buchsbaum, A.M., Reddy, K.L., et al., Vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock, Cell, 2003, vol. 112, no. 3, pp. 329–341.PubMedCrossRefGoogle Scholar
  39. 39.
    Lim, P., Chung, B.Y., Pitman, J.L., et al., Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila, Curr. Biol., 2007, vol. 17, no. 12, pp. 1082–1089.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kondratov, R.V. and Antoch, M.P., Circadian proteins in the regulation of cell cycle and genotoxic stress responses, Trends Cell Biol., 2007, vol. 17, no. 7, pp. 311–317.PubMedCrossRefGoogle Scholar
  41. 41.
    Partch, P.L., Green, P.B., and Takahashi, J.S., Molecular architecture of the mammalian circadian clock, Trends Cell Biol., 2014, vol. 24, no. 2, pp. 90–99.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Preitner, N., Damiola, F., Zakany, J., et al., The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator, Cell, 2002, vol. 110, no. 2, pp. 251–260.PubMedCrossRefGoogle Scholar
  43. 43.
    Cho, H., Zhao, X., Hatori, M., et al., Regulation of circadian behaviour and metabolism by REV-ERBa and REV-ERBß, Nature, 2012, vol. 485, no. 7396, pp. 123–127.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bugge, A., Feng, D., Everett, L.J., et al., REV-ERBa and REV-ERBß coordinately protect the circadian clock and normal metabolic function, Genes Dev., 2012, vol. 26, no. 7, pp. 657–667.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    http://wwwuniprotorg/uniprot/?query=period&sort=scoreGoogle Scholar
  46. 46.
    http://wwwuniprotorg/uniprot/?query=CLOCK&sort=scoreGoogle Scholar
  47. 47.
    http://wwwuniprotorg/uniprot/?query=NPAS2&sort=scoreGoogle Scholar
  48. 48.
    http://wwwuniprotorg/uniprot/?query=ARNTL&sort=scoreGoogle Scholar
  49. 49.
    http://wwwuniprotorg/uniprot/?query=CRYPTOCHROME&sort=scoreGoogle Scholar
  50. 50.
    http://wwwuniprotorg/uniprot/?query=timeless&sort=scoreGoogle Scholar
  51. 51.
    http://wwwuniprotorg/uniprot/?query=RORA&sort=scoreGoogle Scholar
  52. 52.
    http://wwwuniprotorg/uniprot/?query=nr1d1&sort=scoreGoogle Scholar
  53. 53.
    http://wwwuniprotorg/uniprot/?query=nr1d2&sort=scoreGoogle Scholar
  54. 54.
    Hooven, L.A., Sherman, K.A., Butcher, S., and Giebultowicz, J.M., Does the clock make the poison? Circadian variation in response to pesticides, PLoS One, 2009, vol. 4, no. 7. e6469PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    O’Neill, J.S. and Feeney, K.A., Circadian redox and metabolic oscillations in mammalian systems, Antioxid. Redox Signaling, 2014, vol. 20, no. 18, pp. 2966–2981.CrossRefGoogle Scholar
  56. 56.
    Méndez, I., Vázquez-Martínez, O., HernándezMuñoz, R., et al., Redox regulation and pro-oxidant reactions in the physiology of circadian systems, Biochimie, 2015. doi 10.1016/jbiochi.2015.04.014Google Scholar
  57. 57.
    Matsuo, T., Yamaguchi, S., Mitsui, S., et al., Control mechanism of the circadian clock for timing of cell division in vivo, Science, 2003, vol. 302, pp. 255–259.PubMedCrossRefGoogle Scholar
  58. 58.
    Fu, L., Pelicano, H., Liu, J., et al., The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo, Cell, 2002, vol. 111, no. 1, pp. 41–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Khanna, K.K., Lavin, M.F., Jackson, S.P., et al., ATM, a central controller of cellular responses to DNA damage, Cell Death Differ., 2001, vol. 8, no. 11, pp. 1052–1065.PubMedCrossRefGoogle Scholar
  60. 60.
    Kurz, E.U. and Lees-Miller, S.P., DNA damageinduced activation of ATM and ATM-dependent signaling pathways, DNA Repair, 2004, vol. 3, no. 8, pp. 889–900.PubMedCrossRefGoogle Scholar
  61. 61.
    Vousden, K. and Prives, C., Blinded by the light: the growing complexity of p53, Cell, 2009, vol. 137, no. 3, pp. 413–431.PubMedCrossRefGoogle Scholar
  62. 62.
    Carrasco-Garcia, E., Arrizabalaga, O., Serrano, M., et al., Increased gene dosage of Ink4/Arf and p53 delays age-associated central nervous system functional decline, Aging Cell, 2015, vol. 14, no. 4, pp. 710–714.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Matheu, A., Maraver, A., Klatt, P., et al., Delayed ageing through damage protection by the Arf/p53 pathway, Nature, 2007, vol. 448, no. 7151, pp. 375–379.PubMedCrossRefGoogle Scholar
  64. 64.
    García-Cao, I., García-Cao, M., Martín-Caballero, J., et al., ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally, EMBO J., 2002, vol. 21, no. 22, pp. 6225–6235.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mendrysa, S.M., O’Leary, K.A., McElwee, M.K., et al., Tumor suppression and normal aging in mice with constitutively high p53 activity, Genes Dev., 2006, vol. 20, no. 1, pp. 16–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Katada, S. and Sassone-Corsi, P., The histone methyltransferase MLL1 permits the oscillation of circadian gene expression, Nat. Struct. Mol. Biol., 2010, vol. 17, no. 12, pp. 1414–1421.PubMedCrossRefGoogle Scholar
  67. 67.
    Tasselli, L. and Chua, K.F., Methylation gets into rhythm with NAD+-SIRT1, Nat. Struct. Mol. Biol., 2015, vol. 22, no. 4, pp. 275–277.PubMedCrossRefGoogle Scholar
  68. 68.
    Kamminga, L.M. and de Haan, G., Cellular memory and hematopoietic stem cell aging, Stem. Cells, 2006, vol. 24, no. 5, pp. 1143–1149.PubMedCrossRefGoogle Scholar
  69. 69.
    Hirayama, J., Sahar, S., Grimaldi, B., et al., CLOCKmediated acetylation of BMAL1 controls circadian function, Nature, 2007, vol. 450, no. 7172, pp. 1086–1090.PubMedCrossRefGoogle Scholar
  70. 70.
    Bellet, M.M. and Sassone-Corsi, P., Mammalian circadian clock and metabolism—the epigenetic link, J. Cell Sci., 2010, vol. 123, pp. 3837–3848.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Masri, S., Zocchi, L., Katada, S., et al., The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control, Ann. New York Acad. Sci., 2012, vol. 1264, no. 1, pp. 103–109.CrossRefGoogle Scholar
  72. 72.
    Masri, S. and Sassone-Corsi, P., The circadian clock: a framework linking metabolism, epigenetics and neuronal function, Nat. Rev. Neurosci., 2013, vol. 14, no. 1, pp. 69–75.CrossRefGoogle Scholar
  73. 73.
    Yamamoto, H., Schoonjans, K., and Auwerx, J., Sirtuin functions in health and disease, Mol. Endocrinol., 2007, vol. 21, no. 8, pp. 1745–1755.PubMedCrossRefGoogle Scholar
  74. 74.
    Preyat, N. and Leo, O., Sirtuin deacylases: a molecular link between metabolism and immunity, J. Leukocyte Biol., 2013, vol. 93, no. 5, pp. 669–680.PubMedCrossRefGoogle Scholar
  75. 75.
    Rogina, B. and Helfand, S.L., Sir2 mediates longevity in the fly through a pathway related to calorie restriction, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 45, pp. 15998–16003.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ramsey, K.M., Yoshino, J., Brace, P.S., et al., Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis, Science, 2009, vol. 324, no. 5927, pp. 651–654.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ramadori, G., Fujikawa, T., Anderson, J., et al., SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance, Cell Metab., 2011, vol. 14, no. 3, pp. 301–312.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Nakagawa, T. and Guarente, L., Sirtuins at a glance, J. Cell Sci., 2011, vol. 124, no. 6, pp. 833–838.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Huang, H. and Tindall, D.J., Dynamic FoxO transcription factors, J. Cell Sci., 2007, vol. 120, no. 15, pp. 2479–2487.PubMedCrossRefGoogle Scholar
  80. 80.
    Burgering, B.M. and Medema, R.H., Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty, J. Leukoc. Biol., 2003, vol. 73, no. 6, pp. 689–701.PubMedCrossRefGoogle Scholar
  81. 81.
    Li, Y., Xu, W., McBurney, M.W., and Longo, V.D., SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons, Cell Metab., 2008, vol. 8, no. 1, pp. 38–48.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hsu, H.J., LaFever, L., and Drummond-Barbosa, D., Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila, Dev. Biol., 2008, vol. 313, no. 2, pp. 700–712.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Parmentier, F., Lejeune, F.X., and Neri, P., Pathways to decoding the clinical potential of stress response FOXO-interaction networks for Huntington’s disease: of gene prioritization and context dependence, Front. Aging Neurosci., 2013, vol. 5.Google Scholar
  84. 84.
    Ro, S.H., Liu, D., Yeo, H., et al., FoxOs in neural stem cell fate decision, Arch. Biochem. Biophys., 2013, vol. 534, no. 1, pp. 55–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim, M., Chung, H., Yoon, P., et al., Increase of INS-1 cell apoptosis under glucose fluctuation and the involvement of FOXO-SIRT pathway, Diabetes Res. Clin. Pract., 2012, vol. 98, no. 1, pp. 132–139.PubMedCrossRefGoogle Scholar
  86. 86.
    Hwang, S.K., Baker, A.R., Young, M.R., et al., Tumor suppressor PDCD4 inhibits NF-kB-dependent transcription in human glioblastoma cells by direct interaction with p65, Carcinogenesis, 2014, vol. 35, no. 7, pp. 1469–1480.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Moskalev, A. and Shaposhnikov, M., Pharmacological inhibition of NF-kB prolongs lifespan of Drosophila melanogaster, Aging (Albany, New York), 2011, vol. 3, no. 4, p. 391.Google Scholar
  88. 88.
    Csiszar, A., Wang, M., Lakatta, E.G., et al., Inflammation and endothelial dysfunction during aging: role of NF-kB, J. Appl. Physiol., 2008, vol. 105, no. 4, pp. 1333–1341.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhang, G., Li, J., Purkayastha, S., et al., Hypothalamic programming of systemic ageing involving IKK-ß, NF-kB and GnRH, Nature, 2013, vol. 497, no. 7448, pp. 211–216.PubMedGoogle Scholar
  90. 90.
    Kawahara, T.L., Michishita, E., Adler, A.S., et al., SIRT6 links histone H3 lysine 9 deacetylation to NF-kB dependent gene expression and organismal life span, Cell, 2009, vol. 136, no. 1, pp. 62–74.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kanfi, Y., Naiman, S., Amir, G., et al., The sirtuin SIRT6 regulates lifespan in male mice, Nature, 2012, vol. 483, no. 7388, pp. 218–221.PubMedCrossRefGoogle Scholar
  92. 92.
    Khapre, R.V., Kondratova, A.A., Patel, S., et al., BMAL1-dependent regulation of the mTOR signaling pathway delays aging, Aging (Albany, New York), 2014, vol. 6, no. 1, pp. 48–57.Google Scholar
  93. 93.
    Hendricks, J.P., Lu, S., Kume, K., et al., Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster, J. Biol. Rhythms, 2003, vol. 18, no. 1, pp. 12–25.PubMedGoogle Scholar
  94. 94.
    Laplante, M. and Sabatini, D.M., mTOR signaling in growth control and disease, Cell, 2012, vol. 149, no. 2, pp. 274–293.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Narasimamurthy, R., Hatori, M., Nayak, S.K., et al., Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 31, pp. 12662–12667.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chen, W.D., Wen, M.S., Shie, S.S., et al., The circadian rhythm controls telomeres and telomerase activity, Biochem. Biophys. Res. Commun., 2014, vol. 451, no. 3, pp. 408–414.PubMedCrossRefGoogle Scholar
  97. 97.
    González-Suárez, E., Geserick, P., Flores, J.M., et al., Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice, Oncogene, 2005, vol. 24, no. 13, pp. 2256–2270.PubMedCrossRefGoogle Scholar
  98. 98.
    Tomás-Loba, A., Flores, I., Fernández-Marcos, P.J., et al., Telomerase reverse transcriptase delays aging in cancer-resistant mice, Cell, 2008, vol. 135, no. 4, pp. 609–622.PubMedCrossRefGoogle Scholar
  99. 99.
    de Jesus, B.B., Vera, E., Schneeberger, K., et al., Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer, EMBO Mol. Med., 2012, vol. 4, no. 8, pp. 691–704.CrossRefGoogle Scholar
  100. 100.
    DeBruyne, J.P., Weaver, D.R., and Reppert, S.M., CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock, Nat. Neurosci., 2007, vol. 10, no. 5, p. 543.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Spengler, M.L., Kuropatwinski, K.K., Comas, M., et al., Core circadian protein CLOCK is a positive regulator of NF-kB-mediated transcription, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 37, pp. E2457–E2465.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Martinek, S., Inonog, S., Manoukian, A.S., and Young, M.W., A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock, Cell, 2001, vol. 105, no. 6, pp. 769–779.PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang, R., Lahens, N.F., Ballance, H.I., et al., A circadian gene expression atlas in mammals: implications for biology and medicine, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 45, pp. 16219–16224.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ümsal-Kaçmaz, K., Chastain, P.D., Qu, P.P., et al., The human Tim/Tipin complex coordinates an IntraS checkpoint response to UV that slows replication fork displacement, Mol. Cell. Biol., 2007, vol. 27, no. 8, pp. 3131–3142.CrossRefGoogle Scholar
  105. 105.
    Gotter, A.L., Suppa, C., and Emanuel, B.S., Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors, J. Mol. Biol., 2007, vol. 366, pp. 36–52.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Shishko, E.D., Gamaleya, N.F., and Minchenko, A.G., Diurnal rhythm, circadian genes and malignant neoplasms, Onkologiya, 2010, vol. 12, no. 4, pp. 316–320.Google Scholar
  107. 107.
    Brown, S.A., Circadian clock-mediated control of stem cell division and differentiation: beyond night and day, Development, 2014, vol. 141, no. 16, pp. 3105–3111.PubMedCrossRefGoogle Scholar
  108. 108.
    Lowe, P.E., O’Rahilly, S., and Rochford, J.J., Adipogenesis at a glance, J. Cell Sci., 2011, vol. 124, no. 16, pp. 2681–2686.PubMedCrossRefGoogle Scholar
  109. 109.
    Grimaldi, B., Bellet, M.M., Katada, S., et al., PER2 controls lipid metabolism by direct regulation of PPAR?, Cell Metab., 2010, vol. 12, no. 5, pp. 509–520.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lemberger, T., Desvergne, B., and Wahli, W., Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology, Ann. Rev. Cell Dev. Biol., 1996, vol. 12, no. 1, pp. 335–363.CrossRefGoogle Scholar
  111. 111.
    Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., et al., Reciprocal regulation of brain and muscle Arntlike protein 1 and peroxisome proliferator-activated receptor a defines a novel positive feedback loop in the rodent liver circadian clock, Mol. Endocrinol., 2006, vol. 20, no. 8, pp. 1715–1727.PubMedCrossRefGoogle Scholar
  112. 112.
    Wang, N., Yang, G., Jia, Z., et al., Vascular PPAR? controls circadian variation in blood pressure and heart rate through Bmal1, Cell Metab., 2008, vol. 8, no. 6, pp. 482–491.PubMedCrossRefGoogle Scholar
  113. 113.
    Klichko, V.I., Chow, E.S., Kotwica-Rolinska, J., et al., Aging alters circadian regulation of redox in Drosophila, Front. Genet., 2015, vol. 6. doi 10.3389/ fgene.2015.00083Google Scholar
  114. 114.
    Krishnan, N., Kretzschmar, D., Rakshit, K., et al., The circadian clock gene period extends healthspan in aging Drosophila melanogaster, Aging (Albany, New York), 2009, vol. 1, no. 11, p. 937.Google Scholar
  115. 115.
    Krishnan, N., Rakshit, K., Chow, E.S., et al., Loss of circadian clock accelerates aging in neurodegeneration-prone mutants, Neurobiol. Dis., 2012, vol. 45, no. 3, pp. 1129–1135.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Rakshit, K. and Giebultowicz, J.M., Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila, Aging Cell, 2013, vol. 12, no. 5, pp. 752–762.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Hashiramoto, A., Yamane, T., Tsumiyama, K., et al., Mammalian clock gene cryptochrome regulates arthritis via proinflammatory cytokine TNF-a, J. Immunol., 2010, vol. 184, no. 3, pp. 1560–1565.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhdanova, I.V., Masuda, K., Quasarano-Kourkoulis, P., et al., Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta, J. Biol. Rhythms, 2011, vol. 26, no. 2, pp. 149–159.PubMedCrossRefGoogle Scholar
  119. 119.
    McKellar, G.E., McCarey, D.W., Sattar, N., et al., Role for TNF in atherosclerosis? Lessons from autoimmune disease, Nat. Rev. Cardiol., 2009, vol. 6, no. 6, pp. 410–417.PubMedCrossRefGoogle Scholar
  120. 120.
    Qin, B. and Deng, Y., Overexpression of circadian clock protein cryptochrome (CRY) 1 alleviates sleep deprivation-induced vascular inflammation in a mouse model, Immunol. Lett., 2015, vol. 163, no. 1, pp. 76–83.PubMedCrossRefGoogle Scholar
  121. 121.
    Cheng, P.W., Adams, G.B., Perin, L., et al., Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression, Cell Stem. Cell, 2014, vol. 14, no. 6, pp. 810–823.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    O’Neill, J.S. and Reddy, A.B., Circadian clocks in human red blood cells, Nature, 2011, vol. 469, no. 7331, pp. 498–503.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Molin, M. and Demir, A.B., Linking peroxiredoxin and vacuolar-ATPase functions in calorie restrictionmediated life span extension, Int. J. Cell Biol., 2014, vol. 2014. doi 10.1155/2014/913071Google Scholar
  124. 124.
    Han, Y.H., Kim, H.S., Kim, J.M., et al., Inhibitory role of peroxiredoxin II(Prx II) on cellular senescence, FEBS Lett., 2005, vol. 579, no. 21, pp. 4897–4902.PubMedCrossRefGoogle Scholar
  125. 125.
    Kim, H.S., Song, M.P., Kwak, I.H., et al., Constitutive induction of p-Erk1/2 accompanied by reduced activities of protein phosphatases 1 and 2A and MKP3 due to reactive oxygen species during cellular senescence, J. Biol. Chem., 2003, vol. 278, no. 39, pp. 37497–37510.PubMedCrossRefGoogle Scholar
  126. 126.
    Hattar, S., Liao, H.W., Takao, M., et al., Melanopsincontaining retinal ganglion cells: architecture, projections, and intrinsic photosensitivity, Science, 2002, vol. 295, pp. 1065–1070.PubMedGoogle Scholar
  127. 127.
    Berson, D.M., Strange vision: ganglion cells as circadian photoreceptors, Trends Neurosci., 2003, vol. 26, no. 6.Google Scholar
  128. 128.
    Kalsbeeka, A., van der Speka, R., Leib, J., et al., Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis, Mol. Cell. Endocrinol., 2012, no. 1, pp. 20–29.CrossRefGoogle Scholar
  129. 129.
    Moga, M.M. and Moore, R.Y., Organization of neural inputs to the suprachiasmatic nucleus in the rat, J. Comp. Neurol., 1997, vol. 389, no. 3, pp. 508–534.PubMedCrossRefGoogle Scholar
  130. 130.
    Kondratova, A.A. and Kondratov, R.V., The circadian clock and pathology of the ageing brain, Nat. Rev. Neurosci., 2012, vol. 13, no. 5, pp. 325–335.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Tosini, G. and Menaker, M., Circadian rhythms in cultured mammalian retina, Science, 1996, vol. 272, no. 5260, pp. 419–421.PubMedCrossRefGoogle Scholar
  132. 132.
    Helfrich-Förster, P., The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster, Proc. Natl. Acad. Sci. U.S.A., 1995, no. 92, pp. 612–616.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Hardin, P.E., Molecular genetic analysis of circadian timekeeping in Drosophila, Adv. Genet., 2011, vol. 74, p. 141.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Helfrich-Förster, P., Shafer, O.T., Wülbeck, C., et al., Development and morphology of the clock-geneexpressing lateral neurons of Drosophila melanogaster, J. Comp. Neurol., 2007, vol. 500, no. 1, pp. 47–70.PubMedCrossRefGoogle Scholar
  135. 135.
    Romanowski, A., Garavaglia, M.J., Goya, M.E., et al., Conservation of circadian clock proteins in the phylum nematoda as revealed by bioinformatic searches, PLoS One, 2014, no. 9(11).Google Scholar
  136. 136.
    Zhdanova, I.V., Masuda, K., Quasarano-Kourkoulis, P., et al., Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta, J. Biol. Rhythms, vol. 26, no. 2, pp. 149–159.Google Scholar
  137. 137.
    Fu, L. and Kettner, N.M., The circadian clock in cancer development and therapy, Prog. Mol. Biol. Transl. Sci., 2013, vol. 119, pp. 221–282.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Kettner, N.M., Katchy, P.A., and Fu, L., Circadian gene variants in cancer, Ann. Med., 2014, vol. 46, no. 4, pp. 208–220.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Hofman, M.A. and Swaab, D.F., Living by the clock: the circadian pacemaker in older people, Ageing Res. Rev., 2006, vol. 5, no. 1, pp. 33–51.PubMedCrossRefGoogle Scholar
  140. 140.
    Froy, O., Metabolism and circadian rhythms implications for obesity, Endocrine Rev., 2010, vol. 31, no. 1, pp. 1–24.CrossRefGoogle Scholar
  141. 141.
    Petrosillo, G., Fattoretti, P., Matera, M., et al., Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection, Rejuvenation Res., 2008, vol. 11, no. 5, pp. 935–943.PubMedCrossRefGoogle Scholar
  142. 142.
    Tajes, M., Gutierrez-Cuesta, J., Ortuño-Sahagun, D., et al., Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway, J. Pineal Res., 2009, vol. 47, no. 3, pp. 228–237.PubMedCrossRefGoogle Scholar
  143. 143.
    Carretero, M. and Escames, G., López, L.P., et al., Long-term melatonin administration protects brain mitochondria from aging, J. Pineal Res., 2009, vol. 47, no. 2, pp. 192–200.PubMedCrossRefGoogle Scholar
  144. 144.
    Öztürk, G., Akbulut, K.G., Güney, A., et al., Agerelated changes in the rat brain mitochondrial antioxidative enzyme ratios: modulation by melatonin, Exp. Gerontol., 2012, vol. 47, no. 9, pp. 706–711.PubMedCrossRefGoogle Scholar
  145. 145.
    Cuesta, S., Kireev, R., Garcia, P., et al., Beneficial effect of melatonin treatment on inflammation, apoptosis and oxidative stress on pancreas of a senescence accelerated mice model, Mech. Ageing Dev., 2011, no. 132, pp. 573–582.PubMedGoogle Scholar
  146. 146.
    Forman, K., Vara, E., García, P., et al., Effect of a combined treatment with growth hormone and melatonin in the cardiological aging on male SAMP8 mice, J. Gerontol., Ser. A, 2011, no. 8(66), pp. 823–834.CrossRefGoogle Scholar
  147. 147.
    Arble, D.M., Bass, J., Laposky, A.D., et al., Circadian timing of food intake contributes to weight gain, Obesity, 2009, no. 17, pp. 2100–2102.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Bray, M.S., Tsai, J.-Y., Villegas-Montoya, P., et al., Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice, Int. J. Obes., 2010, no. 34, pp. 1589–1598.CrossRefGoogle Scholar
  149. 149.
    Wu, T., Sun, L., ZhuGe, F., et al., Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology, Chronobiol. Int., 2011, no. 28, pp. 890–903.PubMedCrossRefGoogle Scholar
  150. 150.
    Birketvedt, G.S., Florholmen, J., Sundsfjord, J., et al., Behavioral and neuroendocrine characteristics of the night-eating syndrome, JAMA, 1999, vol. 282, no. 7, pp. 657–663.PubMedCrossRefGoogle Scholar
  151. 151.
    Husse, J., Hintze, S.P., Eichele, G., et al., Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption, PLoS One, 2012, no. 12(7).Google Scholar
  152. 152.
    López-Otín, P., Blasco, M.A., Partridge, L., et al., The hallmarks of aging, Cell, 2013, no. 153, pp. 1194–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Satoh, A., Brace, P.S., Rensing, N., et al., The hallmarks of aging, Cell Metabolism, 2013, no. 18, pp. 416–430.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Chang, P.J., Hsu, P.P., Yung, M.P., et al., Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression, Biochem. Biophys. Res. Commun., 2009, no. 380, pp. 236–242.PubMedCrossRefGoogle Scholar
  155. 155.
    Lee, S.E., Kim, S.J., Yoon, H.J., et al., Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin, J. Pineal Res., 2013, vol. 54, no. 1, pp. 80–88.PubMedGoogle Scholar
  156. 156.
    Vriend, J. and Reiter, R.J., Melatonin feedback on clock genes: a theory involving the proteasome, J. Pineal Res., 2015, vol. 58, no. 1, pp. 1–11.PubMedCrossRefGoogle Scholar
  157. 157.
    Flourakis, M., Kula-Eversole, E., Hutchison, A.L., et al., A conserved bicycle model for circadian clock control of membrane excitability, Cell, 2015, vol. 162, no. 4, pp. 836–848.PubMedCrossRefGoogle Scholar
  158. 158.
    Pieri, C., Nagy, I.Z., Nagy, V.Z., et al., Energy dispersive X-ray microanalysis of the electrolytes in biological bulk specimen. 2. Age-dependent alterations in the monovalent ion contents of cell nucleus and cytoplasm in rat liver and brain cells, J. Ultrastruct. Res., 1977, vol. 59, no. 3, pp. 320–331.PubMedCrossRefGoogle Scholar
  159. 159.
    Stevens, R.G., Working against our endogenous circadian clock: breast cancer and electric lighting in the modern world, Mutat. Res., 2009, vol. 680, p. 1068.Google Scholar
  160. 160.
    Woon, P.Y., Kaisaki, P.J., Braganca, J., et al., Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 14412–14417.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Popa-Wagner, A., Catalin, B., and Buga, A.M., Novel putative mechanisms to link circadian clocks to healthy aging, J. Neural. Transm. Epub., 2013.Google Scholar
  162. 162.
    Milagro, F.I., Gomez-Abellan, P., and Campion, J., et al., CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake, Chronobiol. Int., 2012, vol. 29, pp. 1180–1194.PubMedGoogle Scholar
  163. 163.
    Partonen, T., Treutlein, J., Alpman, A., et al., Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression, Ann. Med., 2007, vol. 39, pp. 229–238.Google Scholar
  164. 164.
    Evans, D.S., Parimi, N., Nievergelt, C.M., et al., Common genetic variants in ARNTl and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly, Sleep, 2013, vol. 36, pp. 431–446.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Zhu, Y., Stevens, R.G., Hoffman, A.E., et al., Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study, Cancer Res., 2009, vol. 69, pp. 9315–9322.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Relles, D., Sendecki, J., and Chipitsyna, G., Circadian gene expression and clinicopathologic correlates in pancreatic cancer, J. Gastrointest. Surg., 2013, vol. 17, pp. 443–450.PubMedCrossRefGoogle Scholar
  167. 167.
    Tokunaga, H., Takebayashi, Y., Utsunomiya, H., et al., Clinicopathological significance of circadian rhythmrelated gene expression levels in patients with epithelial ovarian cancer, Acta Obstet. Gynecol. Scand., 2008, vol. 87, pp. 1060–1070.PubMedCrossRefGoogle Scholar
  168. 168.
    Yang, M.Y., Chang, J.G., Lin, P.M., et al., Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3, Cancer Sci., 2006, vol. 97, pp. 1298–1307.PubMedCrossRefGoogle Scholar
  169. 169.
    Elshazley, M., Sato, M., Hase, T., et al., The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma, Int. J. Cancer, 2012, vol. 131, pp. 2820–2831.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Hsu, C.M., Lin, S.F., Lu, C.T., et al., Altered expression of circadian clock genes in head and neck squamous cell carcinoma, Tumour Biol., 2012, vol. 33, pp. 149–155.PubMedCrossRefGoogle Scholar
  171. 171.
    Taniguchi, H., Fernandez, A.F., Setien, F., et al., Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies, Cancer Res., 2009, vol. 69, pp. 8447–8454.PubMedCrossRefGoogle Scholar
  172. 172.
    Dai, H., Zhang, L., Cao, M., et al., The role of polymorphisms in circadian pathway genes in breast tumorigenesis, Breast Cancer Res. Treat., 2011, vol. 127, pp. 531–540.PubMedCrossRefGoogle Scholar
  173. 173.
    Sookoian, S., Castano, G., and Gemma, C., Common genetic variations in CLOCK transcription factor are associated with nonalcoholic fatty liver disease, World J. Gastroenterol., 2007, vol. 13, pp. 4242–4248.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Kloog, I., Haim, A., and Stevens, R.G., Global codistribution of light at night (LAN) and cancers of prostate, colon, and lung in men, Chronobiol. Int., 2009, vol. 26, pp. 108–125.PubMedCrossRefGoogle Scholar
  175. 175.
    Evans, D.S., Parimi, N., Nievergelt, C.M., et al., Common genetic variants in ARNTl and NPAS2 and at chromosome 12p13 are associated with objectively measured sleep traits in the elderly, Sleep, 2013, vol. 36, pp. 431–446.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Chu, L.W., Zhu, Y., Yu, K., et al., Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study, Prostate Cancer Prostatic Dis., 2008, vol. 11, pp. 342–348.PubMedCrossRefGoogle Scholar
  177. 177.
    Hernandez-Morante, J.J., Gomez-Santos, C., Margareto, J., et al., Influence of menopause on adipose tissue clock gene genotype and its relationship with metabolic syndrome in morbidly obese women, Age, 2012, vol. 34, pp. 1369–1380.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Miao, C.G., Yang, Y.Y., He, X., et al., The emerging role of microRNAs in the pathogenesis of systemic lupus erythematosus, Cell Signal, 2013, vol. 25, pp. 1828–1836.PubMedCrossRefGoogle Scholar
  179. 179.
    Lengyel, Z., Lovig, C., Kommedal, S., et al., Altered expression patterns of clock gene mRNAs and clock proteins in human skin tumors, Tumour Biol., 2013, vol. 34, pp. 811–819.PubMedCrossRefGoogle Scholar
  180. 180.
    Rana, S., Munawar, M., Shahid, A., et al., Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia, Mol. Biol. Rep., 2014, vol. 41, pp. 95–103.PubMedCrossRefGoogle Scholar
  181. 181.
    Gomez-Abellan, P., Gomez-Santos, C., Madrid, J.A., et al., Circadian expression of adiponectin and its receptors in human adipose tissue, Endocrinology, 2010, vol. 151, pp. 115–122.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Garaulet, M., Lee, Y.C., Shen, J., et al., CLOCK genetic variation and metabolic syndrome risk: modulation by monounsaturated fatty acids, Am. J. Clin. Nutr., 2009, vol. 90, pp. 1466–1475.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Roe, O.D., Anderssen, E., Helge, E., et al., Genomewide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype, PLoS One, 2009, vol. 4, p. 6554.CrossRefGoogle Scholar
  184. 184.
    Pappa, K.I., Gazouli, M., and Anastasiou, E., Circadian clock gene expression is impaired in gestational diabetes mellitus: gynecological endocrinology, J. Int. Soc. Gynecol. Endocrinol., 2013, vol. 29, pp. 331–335.CrossRefGoogle Scholar
  185. 185.
    Youngman, M.J., Rogers, Z.N., and Kim, D.H., A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans, PLoS Genet., 2011, no. 7, pp. 236–242.CrossRefGoogle Scholar
  186. 186.
    Zou, S., Meadows, S., Sharp, L., et al., Genome-wide study of aging and oxidative stress response in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 25, pp. 13726–13731.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Sinha, M., Jang, Y.C., Oh, J., et al., Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle, Science, 2014, vol. 6184, no. 344, pp. 649–652. doi 10.1126/science.1251152CrossRefGoogle Scholar
  188. 188.
    Liu, D., Sartor, M.A., Nader, G.A., et al., Microarray analysis reveals novel features of the muscle aging process in men and women, J. Gerontol., Ser. A, 2013, vol. 68, pp. 1035–1044.CrossRefGoogle Scholar
  189. 189.
    Panga, W.W., Priceb, E.A., Sahooa, D., et al., Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 50, no. 108, pp. 20012–20017.CrossRefGoogle Scholar
  190. 190.
    Krizhanovsky, V., Yon, M., Dickins, R.A., et al., Senescence of activated stellate cells limits liver fibrosis, Cell, 2008, vol. 134, no. 4, pp. 657–667. doi: 10.1016/jcell.2008.06.049PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Scaffidi, P. and Misteli, T., Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing, Nat. Cell Biol., 2008, vol. 4, no. 10, pp. 452–459.CrossRefGoogle Scholar
  192. 192.
    Lu, T., Pan, Y., Kao, S.-Y., et al., Gene regulation and DNA damage in the ageing human brain, Nature, 2004, vol. 429, pp. 883–891.PubMedCrossRefGoogle Scholar
  193. 193.
    Kim, E.B., Fang, X., Fushan, A.A., et al., Genome sequencing reveals insights into physiology and longevity of the naked mole rat, Nature, 2011, vol. 7372, no. 479, pp. 223–227. doi: 10.1038/nature10533CrossRefGoogle Scholar
  194. 194.
    Loram, J. and Bodnar, A., Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus, Mech. Ageing Dev., 2012, vol. 133, pp. 338–347.PubMedCrossRefGoogle Scholar
  195. 195.
    Seim, I., Ma, S., Zhou, X., et al., The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal, Aging, 2014, vol. 6, no. 10, pp. 879–899.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • I. A. Solovyov
    • 1
    • 2
    Email author
  • E. V. Dobrovol’skaya
    • 1
  • A. A. Moskalev
    • 1
    • 2
    • 3
    • 4
  1. 1.Institute of Biology, Komi Research Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia
  2. 2.Department of BiologySorokin Syktyvkar State UniversitySyktyvkarRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow regionRussia
  4. 4.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations