Russian Journal of Genetics

, Volume 52, Issue 1, pp 17–28 | Cite as

Mutation induction in the mouse and human germline

Reviews and Theoretical Articles
  • 56 Downloads

Abstract

The review describes the effects of exposure to mutagens on mutation induction in human and mouse germlines. The results of studies that evaluated inductions of mutations in human families subjected to irradiation are presented and discussed. The effects of exposure to mutagens on mutation induction in the mouse germline are also considered. We analyze and discuss the recent data on the genome-wide effects of irradiation on mutation induction in the mouse germline obtained by next-generation sequencing and comparative genome hybridization.

Keywords

mutation mutagens germ cells human mouse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Muller, H.J., Artificial transmutation on the gene, Science, 1927, vol. 46, pp. 84–87.CrossRefGoogle Scholar
  2. 2.
    Timofeeff-Ressovky, N.W., Zimmer, K.G., and Delbrück, M., Über die Natur der Genmutation und der Genstruktur, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., Fachgrupp. 4, 1935, vol. 1, no. 13, pp. 189–245.Google Scholar
  3. 3.
    Campbell, C.D. and Eichler, E.E., Properties and rates of germline mutations in humans, Trends Genet., 2013, vol. 29, pp. 575–584. doi 10.1016/j.tig.2013.04.005PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kong, A., Frigge, M.L., Masson, G., et al., Rate of de novo mutations and the importance of father’s age to disease risk, Nature, 2012, vol. 488, pp. 471–475. doi 10.1038/nature11396PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Adewoye, A.B., Lindsay, S.J., Dubrova, Y.E., and Hurles, M.E., The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline, Nat. Commun., 2015, vol. 6, p. 6684. doi 10.1038/ncomms7684PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Uchimura, A., Higuchi, M., Minakuchi, Y., et al., Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice, Genome Res., 2015, vol. 25, pp. 1125–1134. doi 10.1101/gr.186148.114PubMedCrossRefGoogle Scholar
  7. 7.
    Redon, R., Ishikawa, S., Fitch, K.A., et al., Global variation in copy number in the human genome, Nature, 2006, vol. 444, pp. 444–454. doi 10.1038/nature05329PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lupski, J.R., Genomic rearrangements and sporadic disease, Nat. Genet., 2007, vol. 39, pp. S43–S47.PubMedCrossRefGoogle Scholar
  9. 9.
    Hassold, T. and Hunt, P., To err (meiotically) is human: the genesis of human aneuploidy, Nat. Rev. Genet., 2001, vol. 2, pp. 280–291.PubMedCrossRefGoogle Scholar
  10. 10.
    Stewart, C., Kural, D., Strömberg, M.P., et al., A comprehensive map of mobile element insertion polymorphism in humans, PLoS Genet., 2011, vol. 7. e1002236. doi 10.1371/journal.pgen.1002236PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Otake, M., Schull, W.J., and Neel, J.V., Congenital malformations, stillbirths and early mortality among the children of atomic bomb survivors: a reanalysis, Radiat. Res., 1990, vol. 122, pp. 1–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Byrne, J., Rasmussen, S.A., Steinhorn, S.C., et al., Genetic diseases in offspring of long-term survivors of childhood and adolescent cancer, Am. J. Hum. Genet., 1998, vol. 62, pp. 45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dubrova, Yu.E., Radiation and mutation induction in the human germline, Radiats. Biol., Radioekol., 2006, vol. 46, no. 5, pp. 537–546.Google Scholar
  14. 14.
    Speicher, M.R., Antonarakis, S.E., and Motulsky, A.G., Vogel and Motulsky’s Human Genetics: Problems and Approaches, Berlin: Springer-Verlag, 2009, 4th ed.Google Scholar
  15. 15.
    Neel, J.V., Satoh, C., Smouse, P., et al., Protein variants in Hiroshima and Nagasaki: tales of two cities, Am. J. Hum. Genet., 1988, vol. 43, pp. 870–893.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Neel, J.V., Satoh, C., Goriki, K., et al., Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report, Am. J. Hum. Genet., 1988, vol. 42, pp. 663–676.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kodaira, M., Satoh, C., Hiyama, K., and Toyama, K., Lack of effects of atomic bomb radiation on genetic instability of tandem-repetitive elements in human germ cells, Am. J. Hum. Genet., 1995, vol. 57, pp. 1275–1283.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Human minisatellite mutation rate after the Chernobyl accident, Nature, 1996, vol. 380, pp. 683–686. doi 10.1038/380683a0PubMedCrossRefGoogle Scholar
  19. 19.
    Vergnaud, G. and Denoeud, F., Minisatellites: mutability and genome architecture, Genome Res., 2000, vol. 10, pp. 899–907. doi 10.1101/gr.10.7.899PubMedCrossRefGoogle Scholar
  20. 20.
    Jeffreys, A.J., Neil, D.L., and Neumann, R., Repeat instability at human minisatellites arising from meiotic recombination, EMBO J., 1998, vol. 17, pp. 4147–4157. doi 10.1093/emboj/17.14.4147PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dubrova, Y.E., Nesterov, V.N., Krouchinsky, N.G., et al., Further evidence for elevated human minisatellite mutation rate in Belarus eight years after the Chernobyl accident, Mutat. Res., 1997, vol. 381, pp. 267–278. doi 10.1016/S0027-5107(97)00212-1PubMedCrossRefGoogle Scholar
  22. 22.
    Dubrova, Y.E., Grant, G., Chumak, A.A., et al., Elevated minisatellite mutation rate in the post-Chernobyl families from Ukraine, Am. J. Hum. Genet., 2002, vol. 71, pp. 801–809. doi 10.1086/342729PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Dubrova, Y.E., Bersimbaev, R.I., Djansugurova, L.B., et al., Nuclear weapons tests and human germline mutation rate, Science, 2002, vol. 295, p. 1037. doi 10.1126/science.1068102PubMedCrossRefGoogle Scholar
  24. 24.
    Dubrova, Y.E., Ploshchanskaya, O.G., Kozionova, O.S., and Akleyev, A.V., Minisatellite germline mutation rate in the Techa River population, Mutat. Res., 2006, vol. 602, pp. 74–82. doi 10.1016/j.mrfmmm.2006.08.001PubMedCrossRefGoogle Scholar
  25. 25.
    Kodaira, M., Ryo, H., Kamada, N., et al., No evidence of increased mutation rates at microsatellite loci in offspring of A-bomb survivors, Radiat. Res., 2010, vol. 173, pp. 205–213. doi 10.1667/RR1991.1PubMedCrossRefGoogle Scholar
  26. 26.
    Kiuru, A., Auvinen, A., Luokkamäki, M., et al., Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers, Radiat. Res., 2003, vol. 159, pp. 651–655. doi http://dx.doi.org/10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2PubMedCrossRefGoogle Scholar
  27. 27.
    Livshits, L.A., Malyarchuk, S.G., Kravchenko, S.A., et al., Children of Chernobyl cleanup workers do not show elevated rates of mutations in minisatellite alleles, Radiat. Res., 2001, vol. 155, pp. 74–80. doi http://dx. doi.org/10.1667/0033-7587(2001)155[0074:COCCWD]2.0.CO;2PubMedCrossRefGoogle Scholar
  28. 28.
    May, C.A., Tamaki, K., Neumann, R., et al., Minisatellite mutation frequency in human sperm following radiotherapy, Mutat. Res., 2000, vol. 453, pp. 67–75. doi 10.1016/S0027-5107(00)00085-3PubMedCrossRefGoogle Scholar
  29. 29.
    Tawn, E.J., Rees, G.S., Leith, C., et al., Germline minisatellite mutations in survivors of childhood and young adult cancer treated with radiation, Int. J. Radiat. Biol., 2011, vol. 87, pp. 330–340. doi 10.3109/09553002.2011.530338PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tawn, E.J., Curwen, G.B., Rees, G.S., and Jonas, P., Germline minisatellite mutations in workers occupationally exposed to radiation at the Sellafield nuclear facility, J. Radiol. Prot., 2015, vol. 35, pp. 21–36. doi 10.1088/0952-4746/35/1/21PubMedCrossRefGoogle Scholar
  31. 31.
    UNSCEAR, Hereditary Effects of Radiation, New York: United Nations, 2001.Google Scholar
  32. 32.
    Snell, G.D., The induction by X-rays of hereditary changes in mice, Genetics, 1935, vol. 20, pp. 545–567.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Charles, R.D., Radiation-induced mutations in mammals, Radiology, 1950, vol. 55, pp. 579–581.PubMedCrossRefGoogle Scholar
  34. 34.
    Russell, L.B., The mouse house: a brief history of the ORNL mouse–genetics program, 1947–2009, Mutat. Res., 2013, vol. 732, pp. 69–90. doi 10.1016/ j.mrrev.2013.08.003CrossRefGoogle Scholar
  35. 35.
    Rader, K.A., Alexander Hollander’s postwar vision for biology: Oak Ridge and beyond, J. Hist. Biol., 2006, vol. 39, pp. 685–706. doi 10.1007/s10739-006-9109-1CrossRefGoogle Scholar
  36. 36.
    Davis, A.P. and Justice, M.J., An Oak Ridge legacy: the specific locus test and its role in mouse mutagenesis, Genetics, 1998, vol. 148, pp. 7–12.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Searle, A.G., Mutation induction in mice, Adv. Radiat. Biol., 1974, vol. 4, pp. 131–207.CrossRefGoogle Scholar
  38. 38.
    Russell, W.L. and Kelly, E.M., Specific-locus mutation frequencies in mouse stem-cell spermatogonia at very low radiation dose rates, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 539–541.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Russell, W.L. and Kelly, E.M., Mutation frequencies in male mice and the estimation of genetic hazard of radiation in men, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 542–544.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Russell, W.L., Hunsicker, P.R., Raymer, G.D., et al., Dose-response curve for ethylnitrosourea-induced specific-locus mutations in mouse spermatogonia, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 3589–3591.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Russell, W.L., Mutation frequencies in female mice and the estimation of genetic hazards of radiation in women, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, pp. 3523–3527.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    UNSCEAR, Sources and Effects of Ionizing Radiation, annex E: Occupational Radiation Exposures, New York: United Nations, 2000.Google Scholar
  43. 43.
    UNSCEAR, Sources and Effects of Ionizing Radiation, annex D: Medical Radiation Exposures, New York: United Nations, 2000.Google Scholar
  44. 44.
    UNSCEAR, Sources and Effects of Ionizing Radiation, annex J: Exposures and Effects of the Chernobyl Accident, New York: United Nations, 2000.Google Scholar
  45. 45.
    Yauk, C.L., Aardema, M.J., van Benthem, J., et al., Approaches for identifying germ cell mutagens: report of the 2013 IWGT Workshop on Germ Cell Assays, Mutat. Res., 2015, vol. 783, pp. 36–54. http://dx.doi.org/10.1016/j.mrgentox.2015.01.008CrossRefGoogle Scholar
  46. 46.
    Ehling, U.H., Genetic risk assessment, Ann. Rev. Genet., 1991, vol. 25, pp. 255–280.PubMedCrossRefGoogle Scholar
  47. 47.
    OECD, Detailed Review of Transgenic Rodent Gene Mutation Assays, no. 103: Series on Testing and Assessment, ENV/JM/MONO(2009)7, Paris: OECD, 2009.Google Scholar
  48. 48.
    Nelson, S.L., Giver, C.R., and Grosovsky, A.J., Spectrum of X-ray-induced mutations in the human hprt gene, Carcinogenesis, 1994, vol. 15, pp. 495–502. doi 10.1093/carcin/15.3.495PubMedCrossRefGoogle Scholar
  49. 49.
    Giver, C.R., Nelson, S.L., Cha, M.Y., et al., Mutational spectrum of X-ray induced TK human cell mutants, Carcinogenesis, 1995, vol. 16, pp. 267–275. doi 10.1093/carcin/16.2.267PubMedCrossRefGoogle Scholar
  50. 50.
    Russell, L.B., Effects of male germ-cell stage on the frequency, nature, and spectrum of induced specificlocus mutations in the mouse, Genetics, 2004, vol. 122, pp. 23–36. doi 10.1007/s10709-004-1443-7Google Scholar
  51. 51.
    Dubrova, Y.E., Jeffreys, A.J., and Malashenko, A.M., Mouse minisatellite mutations induced by ionizing radiation, Nat. Genet., 1993, vol. 5, pp. 92–94. doi 10.1038/ng0993-92PubMedCrossRefGoogle Scholar
  52. 52.
    Bois, P., Williamson, J., Brown, J., et al., A novel unstable mouse VNTR family expanded from SINE B1 element, Genomics, 1998, vol. 49, pp. 122–128. doi 10.1006/geno.1998.5228PubMedCrossRefGoogle Scholar
  53. 53.
    Hardwick, R.J., Tretyakov, M.V., and Dubrova, Y.E., Age-related accumulation of mutations supports a replication-dependent mechanism of spontaneous mutation at tandem repeat DNA loci in mice, Mol. Biol. Evol., 2009, vol. 26, pp. 2647–2654. doi 10.1093/molbev/msp182PubMedCrossRefGoogle Scholar
  54. 54.
    Shanks, M., Riou, L., Fouchet, P., and Dubrova, Y.E., Stage-specificity of spontaneous mutation at a tandem repeat DNA locus in the mouse germline, Mutat. Res., 2008, vol. 641, pp. 58–60. doi 10.1016/j.mrfmmm.2008.03.006PubMedCrossRefGoogle Scholar
  55. 55.
    Sadamoto, S., Suzuki, S., Kamiya, K., et al., Radiation induction of germline mutation at a hypervariable mouse minisatellite locus, Int. J. Radiat. Biol., 1994, vol. 65, pp. 549–557.PubMedCrossRefGoogle Scholar
  56. 56.
    Fan, Y.J., Wang, Z., Sadamoto, S., et al., Doseresponse of radiation induction of a germline mutation at a hypervariable mouse minisatellite locus, Int. J. Radiat. Biol., 1995, vol. 68, pp. 177–183.PubMedCrossRefGoogle Scholar
  57. 57.
    Dubrova, Y.E., Plumb, M., Brown, J., et al., Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 6251–6255.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dubrova, Y.E., Plumb, M., Brown, J., et al., Induction of minisatellite mutations in the mouse germline by low-dose chronic exposure to ?-radiation and fission neutrons, Mutat. Res., 2000, vol. 453, pp. 17–24. doi 10.1016/S0027-5107(00)00068-3PubMedCrossRefGoogle Scholar
  59. 59.
    Barber, R., Plumb, M.A., Smith, A.G., et al., No correlation between germline mutation at repeat DNA and meiotic crossover in male mice exposed to X-rays or cisplatin, Mutat. Res., 2000, vol. 457, pp. 79–91. doi 10.1016/S0027-5107(00)00130-5PubMedCrossRefGoogle Scholar
  60. 60.
    Dubrova, Y.E., Radiation-induced mutation at tandem repeat DNA loci in the mouse germline: spectra and doubling doses, Radiat. Res., 2005, vol. 163, pp. 200–207. doi http://dx.doi.org/10.1667/RR3296PubMedCrossRefGoogle Scholar
  61. 61.
    Barber, R.C., Hardwick, R.J., Shanks, M.E., et al., The effects of in utero irradiation on mutation induction and transgenerational instability in mice, Mutat. Res., 2009, vol. 664, pp. 6–12. doi 10.1016/j.mrfmmm.2009.01.011PubMedCrossRefGoogle Scholar
  62. 62.
    Abouzeid Ali, H.E., Barber, R.C., and Dubrova, Y.E., The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice, Mutat. Res., 2012, vol. 732, pp. 21–25. doi 10.1016/j.mrfmmm.2012.01.003PubMedCrossRefGoogle Scholar
  63. 63.
    Mughal, S.K., Myazin, A.E., Zhavoronkov, L.P., et al., The dose and dose-rate effects of paternal irradiation on transgenerational instability in mice: a radiotherapy connection, PLoS One, 2012, vol. 7. e41300. doi 10.1371/journal.pone.0041300PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Vilarino-Guell, C., Smith, A.G., and Dubrova, Y.E., Germline mutation induction at mouse repeat DNA loci by chemical mutagens, Mutat. Res., 2003, vol. 526, pp. 63–73. doi 10.1016/S0027-5107(03)00016-2PubMedCrossRefGoogle Scholar
  65. 65.
    Glen, C.D., Smith, A.G., and Dubrova, Y.E., Singlemolecule PCR analysis of germ line mutation induction by anticancer drugs in mice, Cancer Res., 2008, vol. 68, pp. 3630–3636. doi 10.1158/0008-5472.CAN08-0484PubMedCrossRefGoogle Scholar
  66. 66.
    Yauk, C.L., Berndt, M.L., Williams, A., et al., Mainstream tobacco smoke causes paternal germ-line DNA mutation, Cancer Res., 2007, vol. 67, pp. 5103–5106. doi 10.1158/0008-5472.CAN-07-0279PubMedCrossRefGoogle Scholar
  67. 67.
    Ritz, C., Ruminski, W., Hougaard, K.S., et al., Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation, Mutat. Res., 2011, vol. 712, pp. 55–58. doi 10.1016/j.mrfmmm.2011.03.007PubMedCrossRefGoogle Scholar
  68. 68.
    Somers, C.M., Yauk, C.L., White, P.A., et al., Air pollution induces heritable DNA mutations, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 15904–15907. doi 10.1073/pnas.252499499PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Somers, C.M., McCarry, B.E., Malek, F., et al., Reduction of particulate air pollution lowers the risk of heritable mutations in mice, Science, 2004, vol. 304, pp. 1008–1010. doi 10.1126/science.1095815PubMedCrossRefGoogle Scholar
  70. 70.
    Yauk, C., Polyzos, A., Rowan-Carroll, A., et al., Germline mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 605–610. doi 10.1073/pnas. 0705896105PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Boisen, A.M., Shipley, T., Jackson, P., et al., In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells, Reprod. Toxicol., 2013, vol. 41, pp. 45–48. doi 10.1016/j.reprotox.2013.06.068PubMedCrossRefGoogle Scholar
  72. 72.
    Voutounou, M., Glen, C.D., and Dubrova, Y.E., The effects of methyl-donor deficiency on mutation induction and transgenerational instability in mice, Mutat. Res., 2012, vol. 734, pp. 1–4. doi 10.1016/j.mrfmmm.2012.04.009PubMedCrossRefGoogle Scholar
  73. 73.
    Wilson, J.W., Haines, J., Sienkiewicz, Z., and Dubrova, Y.E., The effects of extremely low frequency magnetic fields on mutation induction in mice, Mutat. Res., 2015, vol. 773, pp. 22–26. doi 10.1016/j.mrfmmm.2015.01.014PubMedCrossRefGoogle Scholar
  74. 74.
    Bouffler, S.D., Bridges, B.A., Cooper, D.N., et al., Assessing radiation-associated mutational risk to the germline: repetitive DNA sequences as mutational targets and biomarkers, Radiat. Res., 2006, vol. 165, pp. 249–268. doi http://dx.doi.org/10.1667/RR3506.1PubMedCrossRefGoogle Scholar
  75. 75.
    Singer, T.M. and Yauk, C.L., Germ cell mutagens: risk assessment challenges in the 21st century, Environ. Mol. Mutagen., 2010, vol. 51, pp. 919–928. doi 10.1002/em.20613PubMedCrossRefGoogle Scholar
  76. 76.
    Witt, K.L. and Bishop, J.B., Mutagenicity of anticancer drugs in mammalian germ cells, Mutat. Res., 1996, vol. 355, pp. 209–234.PubMedCrossRefGoogle Scholar
  77. 77.
    Barber, R.C., Miccoli, L., van Buul, P.P.W., and Burr, K.L-A., et al., Germline mutation rates at tandem repeat loci in DNA-repair deficient mice, Mutat. Res., 2004, vol. 554, pp. 287–295. doi 10.1016/j.mrfmmm.2004.05.003PubMedCrossRefGoogle Scholar
  78. 78.
    Lander, E.S., Linton, L.M., Birren, B., et al., International human genome sequencing, initial sequencing and analysis of the human genome, Nature, 2001, vol. 409, pp. 860–921. doi 10.1038/35057062PubMedCrossRefGoogle Scholar
  79. 79.
    Waterston, R.H., Lindblad-Toh, K., Birney, E., et al., Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, pp. 520–562. doi 10.1038/nature01262Google Scholar
  80. 80.
    Metzker, M.L., Sequencing technologies—the next generation, Nat. Rev. Genet., 2010, vol. 11, pp. 31–46. doi 10.1038/nrg2626PubMedCrossRefGoogle Scholar
  81. 81.
    Frankenberg-Schwager, M., Induction, repair and biological relevance of radiation-induced DNA lesions in eukaryotic cells, Radiat. Environ. Biophys., 1990, vol. 29, pp. 273–292.PubMedCrossRefGoogle Scholar
  82. 82.
    Friedberg, E.C., Walker, G.C., Siede, W., et al., DNA Repair and Mutagenesis, Washington: ASM Press, 2006, 2nd ed.Google Scholar
  83. 83.
    Cooper, G.M., Coe, B.P., Girirajan, S., et al., A copy number variation morbidity map of developmental delay, Nat. Genet., 2011, vol. 14, pp. 838–846. doi 10.1038/ng.909CrossRefGoogle Scholar
  84. 84.
    Girirajan, S., Rosenfeld, A.J., Coe, B.P., et al., Phenotypic heterogeneity of genomic disorders and rare copynumber variants, N. Engl. J. Med., 2012, vol. 367, pp. 1321–1331. doi 10.1056/NEJMoa1200395PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Stefansson, H., Meyer-Lindenberg, A., Steinberg, S., et al., CNVs conferring risk of autism or schizophrenia affect cognition in controls, Nature, 2014, vol. 505, pp. 361–366. doi 10.1038/nature12818PubMedCrossRefGoogle Scholar
  86. 86.
    Lindahl, T. and Anderson, B., Repair of endogenous DNA damage, Cold Spring Harbor Symp. Quant. Biol., 2000, vol. 65, pp. 127–133.PubMedCrossRefGoogle Scholar
  87. 87.
    Eccles, L.J., O’Neill, P., and Lomax, M.E., Delayed repair of radiation induced clustered damage: friend or foe?, Mutat. Res., 2011, vol. 711, pp. 134–141. doi 10.1016/j.mrfmmm.2010.11.003PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Goodhead, D.T., Spatial and temporal distribution of energy, Health Phys., 1988, vol. 55, pp. 231–240.PubMedCrossRefGoogle Scholar
  89. 89.
    Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., et al., Signatures of mutational processes in human cancer, Nature, 2013, vol. 500, pp. 415–421. doi 10.1038/nature12477PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Department of GeneticsLeicester UniversityLeicesterUnited Kingdom
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations