Russian Journal of Genetics

, Volume 51, Issue 12, pp 1199–1203 | Cite as

Development of new mitochondrial DNA markers in Scots pine (Pinus sylvestris L.) for population and phylogeographic studies

  • V. L. SemerikovEmail author
  • Yu. A. Putintseva
  • N. V. Oreshkova
  • S. A. Semerikova
  • K. V. Krutovsky
Plant Genetics


Fragments of genomic DNA of Scots pine (Pinus sylvestris L.) homologous to the mitochondrial DNA (mtDNA) contigs of Norway spruce (Picea abies (L.) Karst.) and loblolly pine (Pinus taeda L.) were resequenced in a sample of the Scots pine trees of European, Siberian, Mongolian, and Caucasian origin in order to develop mtDNA markers. Flanking non-coding regions of some mitochondrial genes were also investigated and resequenced. Five single nucleotide polymorphisms (SNPs) and a single minisatellite locus were identified. Caucasian samples differed from the rest by three SNPs. Two SNPs have been linked to an early described marker in the first intron of the nad7 gene, and all together revealed three haplotypes in European populations. No variable SNPs were found in the Siberian and Mongolian populations. The minisatellite locus contained 41 alleles across European, Siberian, and Mongolian populations, but, this locus demonstrated a weak population differentiation (F ST = 5.8), probably due to its high mutation rate.


mitochondrial DNA next generation sequencing markers phylogeography Pinus sylvestris Scots pine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sperisen, C., Büchler, U., Gugerli, F., et al., Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce, Mol. Ecol., 2001, vol. 10, pp. 257–263. doi 10.1046/j.1365-294X.2001.01180xCrossRefPubMedGoogle Scholar
  2. 2.
    Tollefsrud, M.M., Kissling, R., Gugerli, F., et al., Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen, Mol. Ecol., 2008, vol. 17, pp. 4134–4150. doi 10.1111/j.1365294X.2008.03893xCrossRefPubMedGoogle Scholar
  3. 3.
    Tollefsrud, M.M., Sonstebo, J.H., Brochmann, C., et al., Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies, Heredity, 2009, vol. 102, pp. 549–562. doi 10.1038/hdy.2009.16CrossRefPubMedGoogle Scholar
  4. 4.
    Parducci, L., Jorgensen, T., Tollefsrud, M.M., et al., Glacial survival of boreal trees in northern Scandinavia, Science, 2012, vol. 335, pp. 1083–1086. doi 10.1126/science.1216043CrossRefPubMedGoogle Scholar
  5. 5.
    Polezhaeva, M.A., Lascoux, M., and Semerikov, V.L., Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia, Mol. Ecol., 2010, vol. 19, pp. 1239–1252. doi 10.1111/j.1365294X.2010.04552xCrossRefPubMedGoogle Scholar
  6. 6.
    Semerikov, V.L., Semerikova, S.A., Polezhaeva, M.M., et al., Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers, Mol. Ecol., 2013, vol. 22, pp. 4958–4971. doi 10.1111/mec.12433CrossRefPubMedGoogle Scholar
  7. 7.
    Naydenov, K., Senneville, S., Beaulieu, J., et al., Glacial vicariance in Eurasia: mitochondrial DNA evidence from scots pine for complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor, BMC Evol. Biol., 2007, vol. 22, pp. 7–233. doi 10.1186/1471-2148-7-233Google Scholar
  8. 8.
    Pyhäjärvi, T., Salmela, M., and Savolainen, O., Colonozation routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation, Tree Genet. Genomes, 2008, vol. 4, pp. 247–254. doi 10.1007/s11295-007-0105-1CrossRefGoogle Scholar
  9. 9.
    Vidyakin, A.I., Semerikov, V.L., Polezhaeva, M.A., and Dymshakova, O.S., Spread of mitochondrial DNA haplotypes in population of scots pine (Pinus sylvestris L.) in northern European Russia, Russ. J. Genet., 2012, vol. 48, no. 12, pp. 1267–1271. doi 10.1134/ S1022795412120150CrossRefGoogle Scholar
  10. 10.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.Google Scholar
  11. 11.
    Rozen, S. and Skaletsky, H.J., Primer3 on the WWW for general users and for biologist programmers, in Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz, S. and Misener, S., Eds., Totowa, N.J.: Humana, 2000, pp. 365–386.Google Scholar
  12. 12.
    Voglestein, B. and Gillespie, D., Preparative and analytical purification of DNA from agarose, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, p. 615.CrossRefGoogle Scholar
  13. 13.
    Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp., 1999, Ser. 41, pp. 95–98.Google Scholar
  14. 14.
    Semerikov, V.L., Semerikova, S.A., Dymshakova, O.S., et al., Microsatellite loci polymorphism of chloroplast DNA of scots pine (Pinus sylvestris L.) in Asia and eastern Europe, Russ. J. Genet., 2014, vol. 50, no. 6, pp. 577–585. doi 10.1134/S1022795414040127CrossRefGoogle Scholar
  15. 15.
    Pons, O. and Petit, R.J., Measuring and testing genetic differentiation with ordered versus unordered alleles, Genetics, 1996, vol. 144, pp. 1237–1245.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Excoffier, L., Laval, G., and Schneider, S., ARLEQUIN ver. 3.1: An Integrated Software Package for Population Genetics Data Analysis. Computational and Molecular Population Genetics Lab (CMPG), Bern: Institute of Zoology, University of Bern, 2006.Google Scholar
  17. 17.
    Raymond, M. and Rousset, F., An exact test for population differentiation, Evolution, 1995, vol. 49, pp. 1280–1283. doi 10.2307/2410454CrossRefGoogle Scholar
  18. 18.
    Raymond, M. and Rousset, F., GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, vol. 86, pp. 248–249.Google Scholar
  19. 19.
    Palmer, J.D., Mitochondrial DNA in plant systematics: applications and limitations, in Molecular Systematics of Plants, Soltis, D., Soltis, P., and Doyle, J.J., Eds., Chapman and Hall, 1992, pp. 36–49.CrossRefGoogle Scholar
  20. 20.
    Wang, B.S. and Wang, X.R., Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus, Mol. Phylogenet. Evol., 2014, vol. 80, pp. 20–30. doi 10.1016/ jympev.2014.07.014CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. L. Semerikov
    • 1
    Email author
  • Yu. A. Putintseva
    • 2
  • N. V. Oreshkova
    • 2
    • 3
  • S. A. Semerikova
    • 1
  • K. V. Krutovsky
    • 2
    • 4
    • 5
    • 6
  1. 1.Institute of Plant and Animal EcologyUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Genome Research and Education CenterSiberian Federal UniversityKrasnoyarskRussia
  3. 3.Sukachev Institute of ForestSiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia
  4. 4.Georg August University of GöttingenGöttingenGermany
  5. 5.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  6. 6.Texas A&M UniversityCollege StationTXUSA

Personalised recommendations