Advertisement

Russian Journal of Genetics

, Volume 51, Issue 12, pp 1233–1242 | Cite as

Comparative analysis of DNA homology in pericentric regions of chromosomes of wood mice from genera Apodemus and Sylvaemus

  • N. B. Rubtsov
  • T. V. Karamysheva
  • A. S. Bogdanov
  • I. V. Kartavtseva
  • M. N. Bochkarev
  • M. A. Iwasa
Animal Genetics

Abstract

In the present study, an analysis of the DNA homology of the pericentric chromosomal regions and pericentric heterochromatin in distantly related species of wood mice (species from the Apodemus genus, as well as from the Apodemus and Sylvaemus genera) was conducted by fluorescent in situ hybridization (FISH) of microdissected DNA probes obtained from the corresponding chromosomal regions of these species. Cross-hybridization of microdissected DNA probes obtained from pericentric C-positive blocks of chromosomes of Sylvaemus species with chromosomes of Apodemus species, as well as DNA probes from pericentric C-positive blocks of chromosomes of Apodemus species with chromosomes of Apodemus and Sylvaemus species, showed that DNA repeats homologous to the pericentric regions in other species represented dispersed repeats in C-negative chromosomal regions, as well as in several regions bordering pericentric Cpositive and C-negative regions in sex chromosomes and autosomes and in distal regions of the long arms of several autosomes. The results indicate that the level of DNA homology in pericentric chromosomal regions decreases with an increase in the differentiation level and a decrease in the relationship between the compared forms and species of wood mice. Most likely, degeneration of the DNA repeats is accompanied by a gradual destruction of repeat clusters and their replacement by new, nonhomologous repeats in almost all pericentric regions (some old repetitive sequences might be “extruded” into interstitial or telomeric regions of chromosomes). These processes, which are observed in some species from Sylvaemus genus, in distantly related species of Sylvaemus and Apodemus genera have almost achieved the final stages.

Keywords

fluorescent in situ hybridization (FISH) heterochromatin DNA repeats evolution pericentric chromosomal regions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karamysheva, T.V., Bogdanov, A.S., Kartavtseva, I.V., et al., Comparative FISH analysis of C-positive blocks of centromeric chromosomal regions of pygmy wood mice Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2010, vol. 46, no. 6, pp. 712–724.CrossRefGoogle Scholar
  2. 2.
    Rubtsov, N.B., Karamysheva, T.V., Bogdanov, A.S., et al., Comparative FISH analysis of C-positive regions of chromosomes of wood mice (Rodentia, Muridae, Sylvaemus), Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1096–1110.CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A.S. and Rozanov, Yu.M., Variability in size of the nuclear genome in pygmy wood mouse Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1123–1129.CrossRefGoogle Scholar
  4. 4.
    Pavlinov, I.Ya., Yakhontov, E.L., and Agadzhanyan, A.K., Mlekopitayushchie Evrazii (sistematiko-geograficheskii spravochnik) (Mammals of Eurasia: A Systematic and Geographic Reference Book), vol. 1: Rodentia, Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  5. 5.
    Pavlinov, I.Ya. and Lisovskii, A.A., Mlekopitayushchie Rossii: sistematiko-geograficheskii spravochnik (Mammals of Russia: Systematic and Geographic Reference Book), Moscow: KMK, 2012.Google Scholar
  6. 6.
    Mezhzherin, S.V., Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae), Russ. J. Genet., 1997, vol. 33, no. 1, pp. 65–72.Google Scholar
  7. 7.
    Mezhzherin, S.V., Revision of mice of the genus Apodemus (Rodentia, Muridae) in Northern Eurasia, Vestn. Zool., 1997, vol. 31, no. 4, pp. 29–41.Google Scholar
  8. 8.
    Corbet, G.B., The Mammals of the Palaearctic Region: A Taxonomic Review, London: Cornell Univ. Press, 1978.Google Scholar
  9. 9.
    Corbet, G.B. and Hill, J.E., The Mammals of the Indomalayan Region: A Systematic Review, Oxford: Oxford Univ. Press, 1992.Google Scholar
  10. 10.
    Musser, G.G., Brothers, E.M., Carleton, M.D., and Hutterer, R., Taxonomy and distributional records of oriental and European Apodemus, with a review of the Apodemus–Sylvaemus problem, Bonner Zool. Beitr., 1996, vol. 46, nos. 1–4, pp. 143–190.Google Scholar
  11. 11.
    Musser, G.G. and Carleton, M.D., Superfamily Muroidea, Mammal Species of the World: A Taxonomic and Geographic Reference, Wilson, D.E. and Reeder, D.M., Eds., Baltimore: Johns Hopkins Univ. Press, 2005, pp. 894–1531.Google Scholar
  12. 12.
    Serizawa, K., Suzuki, H., and Tsuchiya, K., A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes, Biochem. Genet., 2000, vol. 38, nos. 1–2, pp. 27–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Mezhzherin, S.V. and Zykov, A.E., Genetic divergence and allozyme variation among mice of the genus Apodemus s. lato (Muridae, Rodentia), Tsitol. Genet., 1991, vol. 25, no. 4, pp. 51–59.PubMedGoogle Scholar
  14. 14.
    Filippucci, M.G., Macholán, M., and Michaux, J.R., Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia), Biol. J. Linn. Soc., 2002, vol. 75, no. 3, pp. 395–419.CrossRefGoogle Scholar
  15. 15.
    Michaux, J.R., Chevret, P., Filippucci, M.-G., and Macholan, M., Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA, Mol. Phylogenet. Evol., 2002, vol. 23, pp. 123–136.CrossRefPubMedGoogle Scholar
  16. 16.
    Chelomina, G.N., Lesnye i polevye myshi: molekulyarno-geneticheskie osnovy evolyutsii i sistematiki (Wood and Field Mice: Molecular-Genetic Aspects of Evolution and Systematics), Vladivostok: Dal’nauka, 2005.Google Scholar
  17. 17.
    Bogdanov, A.S., Stakheev, V.V., Zykov, A.E., et al., Genetic variation and differentiation of wood mice from the genus Sylvaemus inferred from sequencing of the cytochrome oxidase subunit 1 gene fragment, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 186–198.CrossRefGoogle Scholar
  18. 18.
    Saitoh, M., Matsuoka, N., and Obara, Y., Biochemical systematics of three species of the Japanese long-tailed field mice, Apodemus speciosus, A. giliacus and A. argenteus, Zool. Sci., 1989, vol. 6, no. 5, pp. 1005–1018.Google Scholar
  19. 19.
    Fukushi, D., Kuro-o, M., Shichiri, M., et al., Molecular cytogenetic analysis of the highly repetitive DNA in the genome of Apodemus argenteus, with comments on the phylogenetic relationships in the genus Apodemus, Cytogenet. Cell Genet., 2001, vol. 92, nos. 3–4, pp. 254–263.CrossRefPubMedGoogle Scholar
  20. 20.
    Suzuki, H., Sato, J.J., Tsuchiya, K., et al., Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia, Biol. J. Linn. Soc., 2003, vol. 80, pp. 469–481.CrossRefGoogle Scholar
  21. 21.
    Radzhabli, S.I. and Borisov, Yu.M., Variants of B-chromosome system in continental forms of Apodemus peninsulae (Rodentia, Muridae), Dokl. Akad. Nauk SSSR, 1979, vol. 248, no. 4, pp. 979–981.Google Scholar
  22. 22.
    Volobuev, V.T., B-chromosome system of the Asian wood mouse Apodemus peninsulae (Rodentia, Muridae): 1. The structure of the karyotype, Gand C-bands and the variation in chromosome number, Genetika (Moscow), 1980, vol. 16, no. 7, pp. 1277–1284.Google Scholar
  23. 23.
    Borisov, Yu.M., Geographical variation of the variants of additional chromosomes system in continental forms of Apodemus peninsulae (Rodentia, Muridae), Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Biol., 1980, vol. 15, no. 3, pp. 61–69.Google Scholar
  24. 24.
    Borisov, Yu.M., Variation of cytogenetic structure of the Apodemus peninsulae (Rodentia, Muridae) populations in West Sayany, Genetika (Moscow), 1990, vol. 26, no. 8, pp. 1484–1491.Google Scholar
  25. 25.
    Abe, S., Han, S.H., Kojima, H., et al., Differential staining profiles of B-chromosomes in the East-Asiatic wood mouse Apodemus peninsulae, Chromosome Sci., 1997, vol. 1, pp. 7–12.Google Scholar
  26. 26.
    Kartavtseva, I.V., Kariosistematika lesnykh i polevykh myshei (Rodentia, Muridae) (Karyosystematics of Wood and Field Mice), Vladivostok: Dal’nauka, 2002.Google Scholar
  27. 27.
    Kobayashi, T. and Hayata, I., Revision of the genus Apodemus in Hokkaido, Annot. Zool. Jpn., 1971, vol. 44, no. 4, pp. 236–240.Google Scholar
  28. 28.
    Yoshida, M.C., Sasaki, M., and Oshimura, M., Karyotype and heterochromatin pattern of the field mouse, Apodemus argenteus Temminck, Genetics, 1975, vol. 45, no. 3, pp. 397–403.Google Scholar
  29. 29.
    Fukuoka, H. and Udagawa, T., On the banding structures of the chromosomes of the field mouse, Apodemus argenteus Temmink, with a note on the number variation, Proc. Jpn. Acad., Ser. B, 1979, vol. 55, no. 10, pp. 492–496.CrossRefGoogle Scholar
  30. 30.
    Obara, Y. and Sasaki, S., Fluorescent approaches on the origin of B chromosomes of Apodemus argenteus Hokkaido, Chromosome Sci., 1997, vol. 1, pp. 1–5.Google Scholar
  31. 31.
    Hirai, H., Moriwaki, K., and Uchida, T.A., Comparative analyses of Japanese wood mice from the Oki islands and the mainland of Japan based on biochemical genetics and cytogenetics, J. Fac. Agr., Kyushu Univ., 1980, vol. 25, no. 1, pp. 1–8.Google Scholar
  32. 32.
    Saitoh, M. and Obara, Y., Chromosome banding patterns in five intraspecific taxa of the large Japanese field mouse, Apodemus speciosus, Zool. Sci., 1986, vol. 3, no. 5, pp. 785–792.Google Scholar
  33. 33.
    Vujošević, M., Rimsa, D., and Živković, S., Patterns of Gand C-bands distribution on chromosomes of three Apodemus species, Z. Säugetierkd., 1984, vol. 49, pp. 234–238.Google Scholar
  34. 34.
    Lungeanu, A., Gavrila, L., Murariu, D., and Stepan, C., The distribution of the constituent heterochromatin and the G-banding pattern in the genome of Apodemus agrarius (Pallas, 1771) (Mammalia, Muridae), Trav. Mus. Hist. Nat. “Grigore Antipa,” 1986, vol. 28, pp. 267–270.Google Scholar
  35. 35.
    Kartavtseva, I.V. and Pavlenko, M.V., Chromosome variation in the striped field mouse Apodemus agrarius (Rodentia, Muridae), Russ. J. Genet., 2000, vol. 36, no. 2, pp. 162–174.Google Scholar
  36. 36.
    Rubtsov, N.B., Karamysheva, T.V., Kartavtseva, I.V., et al., B-chromosomes: DNA, origin, evolution, Biol. Membr., 2005, vol. 22, no. 3, pp. 196–211.Google Scholar
  37. 37.
    Rubtsov, N.B., Kartavtseva, I.V., Roslik, G.V., et al., Features of the B chromosomes in Korean field mouse Apodemus peninsulae (Thomas, 1906) from Transbaikalia and the Far East identified by the FISH method, Russ. J. Genet., 2015, vol. 51, no. 3, pp. 278–288.CrossRefGoogle Scholar
  38. 38.
    Matsubara, K., Nishida-Umehara, Ch., Tsuchiya, K., et al., Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses, Chromosome Res., 2004, vol. 12, pp. 383–395.CrossRefPubMedGoogle Scholar
  39. 39.
    Kuznetsova, I., Podgornaya, O., and FergusonSmith, M.A., High-resolution organization of mouse centromeric and pericentromeric DNA, Cytogenet. Genome Res., 2006, vol. 112, nos. 3–4, pp. 248–255.CrossRefPubMedGoogle Scholar
  40. 40.
    Ostromyshenskii, D.I., Kuznetsova, I.S., Komissarov, A.S., et al., Tandem repeats in the rodent genome and their mapping, Cell Tissue Biol., 2015, vol. 9, no. 3, pp. 217–225.CrossRefGoogle Scholar
  41. 41.
    Hirning, U., Schulz, W.A., Just, W., et al., A comparative study of the heterochromatin of Apodemus sylvaticus and Apodemus flavicollis, Chromosoma, 1989, vol. 98, no. 6, pp. 450–455.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • N. B. Rubtsov
    • 1
    • 2
  • T. V. Karamysheva
    • 1
  • A. S. Bogdanov
    • 3
  • I. V. Kartavtseva
    • 4
  • M. N. Bochkarev
    • 1
  • M. A. Iwasa
    • 5
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of Cytology and GeneticsNovosibirsk State UniversityNovosibirskRussia
  3. 3.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Biology and Soil Science, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  5. 5.Nihon UniversityKanagawaJapan

Personalised recommendations