Russian Journal of Genetics

, Volume 51, Issue 8, pp 737–744 | Cite as

The effect of introduction of the Heterologous gene encoding the N-acyl-homoserine lactonase (aiiA) on the properties of Burkholderia cenocepacia 370

  • V. A. Plyuta
  • V. A. Lipasova
  • O. A. Koksharova
  • M. A. Veselova
  • A. E. Kuznetsov
  • I. A. KhmelEmail author
Genetics of Microorganisms


To study the role of Quorum Sensing (QS) regulation in the control of the cellular processes of Burkholderia cenocepacia 370, plasmid pME6863 was transferred into its cells. The plasmid contains a heterologous gene encoding AiiA N-acyl-homoserine lactonase, which degrades the signaling molecules of the QS system of N-acyl-homoserine lactones (AHL). An absence or reduction of AHL in the culture was revealed with the biosensors Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1/pZLR4, respectively. The presence of the aiiA gene, which was cloned from Bacillus sp. A24 in the cells of B. cenocepacia 370, resulted in a lack of hemolytic activity, reduced the extracellular proteolytic activity and decreased the cells’ ability to swarming migration on the surface of the agar medium. The introduction of the aiiA gene did not affect lipase activity, fatty acids synthesis, HCN synthesis, or biofilm formation. Hydrogen peroxide was shown to stimulate biofilm formation by B. cenocepacia 370 in concentrations that inhibited or weakly suppressed bacterial growth. The introduction of the aiiA gene into the cells did not eliminate this effect but it did reduce it.


Quorum Sensing Luria Broth Quorum Sensing System Acyl Homoserine Lactone aiiA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coenye, T. and Vandamne, P., Diversity and significance of Burkholderia species occupying diverse ecological niches, Environ. Microbiol., 2003, vol. 5, pp. 719–729.CrossRefPubMedGoogle Scholar
  2. 2.
    Vial, L., Chapalain, A., Groleau, M. C., and Déziel, E., The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation, Environ. Microbiol., 2011, vol. 13, pp. 1–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Waters, C. and Bassler, B., Quorum Sensing: cell-tocell communication in bacteria, Annu. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 319–346.CrossRefPubMedGoogle Scholar
  4. 4.
    Khmel, I. A. and Metlitskaya, A. Z., Quorum sensing regulation of gene expression: a promising target for drugs against bacterial pathogenicity, Mol. Biol. (Moscow), 2006, vol. 40, no. 2, pp. 169–182.CrossRefGoogle Scholar
  5. 5.
    Huber, B., Riedel, K., Hentzer, M., et al., The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility, Microbiology, 2001, vol. 147, pp. 2517–2528.PubMedGoogle Scholar
  6. 6.
    Malott, R., Baldwin, A., Mahenthiralingam, E., and Sokol, P., Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia, Infect. Immunol., 2005, vol. 73, pp. 4982–4992.CrossRefGoogle Scholar
  7. 7.
    Eberl, L., Quorum sensing in the genus Burkholderia, Int. J. Med. Microbiol., 2006, vol. 296, pp. 103–110.CrossRefPubMedGoogle Scholar
  8. 8.
    Sokol, P. A., Malott, R. J., Riedel, K., and Eberl, L., Communication systems in the genus Burkholderia: global regulators and targets for novel antipathogenic drugs, Future Microbiol., 2007, vol. 2, pp. 555–563.CrossRefPubMedGoogle Scholar
  9. 9.
    O’Grady, E. P., Viteri, D. F., Malott, R. J., and Sokol, P. A., Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia, BMC Genomics, 2009. doi 10. 1186/1471-2164-10-441Google Scholar
  10. 10.
    Loutet, S. A. and Valvano, M. A., A decade of Burkholderia cenocepacia virulence determinant research, Infect. Immunol., 2010, vol. 78, pp. 4088–4100.CrossRefGoogle Scholar
  11. 11.
    Suppiger, A., Schmid, N., Aguilar, C., et al., Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex, Virulence, 2013, vol. 4, pp. 400–409.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Deng, Y., Boon, C., Eberl, L., and Zhang, L. -H., Differential modulation of Burkholderia cenocepacia virulence and energy metabolism by the Quorum-Sensing signal BDSF and its synthase, J. Bacteriol., 2009, vol. 191, pp. 7270–7278.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Diggle, S., Winzer, K., Lazdunski, A., et al., Advancing the quorum in Pseudomonas aeruginosa, MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression, J. Bacteriol., 2002, vol. 184, pp. 2576–2586.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Reimmann, C., Ginet, N., Michel, L., et al., Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1, Microbiology, 2002, vol. 148, pp. 923–932.PubMedGoogle Scholar
  15. 15.
    Veselova, M. A., Lipasova, V. A., Zaitseva, Yu. V., et al., Mutants of Burkholderia cenocepacia with a change in synthesis of N-acyl-homoserine lactones—signal molecules of quorum sensing regulation, Russ. J. Genet., 2012, vol. 48, no. 5, pp. 513–521.CrossRefGoogle Scholar
  16. 16.
    Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Laboratory, 1972.Google Scholar
  17. 17.
    McClean, K. H., Winson, M. K., Fish, L., et al., Quorum sensing in Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones, Microbiology, 1997, vol. 143, pp. 3703–3711.CrossRefPubMedGoogle Scholar
  18. 18.
    Shaw, P. D., Ping, G., Daly, S. L., et al., Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 6036–6041.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Lonon, M., Woods, D., and Straus, D., Production of lipase by clinical isolates of Pseudomonas cepacia, J. Clin. Microbiol., 1988, vol. 26, pp. 979–984.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Déziel, E., Comeau, Y., and Villemur, R., Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities, J. Bacteriol., 2001, vol. 183, pp. 1195–1204.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Tsaplina, I. A., Osipov, G. A., Bogdanova, T. I., et al., The fatty acid composition of lipids of thermoacidophilic bacteria of the genus Sulfobacillus, Mikrobiologiya, 1994, vol. 63, no. 5, pp. 390–401.Google Scholar
  22. 22.
    Davies, D. G., Parsek, M. R., and Pearson, J. P., et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 1998, vol. 280, pp. 295–298.CrossRefPubMedGoogle Scholar
  23. 23.
    Plyuta, V. A., Andreenko, Yu. V., Kuznetsov, A. E., and Khmel, I. A., Formation of Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide: the effect of the aiiA gene, Mol. Genet., Microbiol. Virusol., 2013, no. 4, pp. 141–146.CrossRefGoogle Scholar
  24. 24.
    Wopperer, J., Cardona, S. T., Huber, B., et al., Quorumquenching approach to investigate the conservation of quorum-sensing-regulated functions within the Burkholderia cepacia complex, Appl. Environ. Microbiol., 2006, vol. 72, pp. 1579–1587.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Ulrich, R. L., Quorum quenching: enzymatic disruption of N-acyl-homoserine lactone-mediated bacterial communication in Burkholderia thailandensis, Appl. Environ. Microbiol., 2004, vol. 70, pp. 6173–6180.PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    O’Toole, G. A. and Kolter, R., Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 1998, vol. 30, pp. 295–304.CrossRefPubMedGoogle Scholar
  27. 27.
    De Kievit, T. R., Quorum sensing in Pseudomonas aeruginosa biofilms, Environ. Microbiol., 2009, vol. 11, pp. 279–288.CrossRefPubMedGoogle Scholar
  28. 28.
    Pessi, G. and Haas, D., Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa, J. Bacteriol., 2000, vol. 182, pp. 6940–6949.PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Wei, H. L. and Zhang, L. Q., Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24, Antonie van Leeuwenhoek, 2006, vol. 89, pp. 267–280.CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffman, L. R., D’Argenio, D. A., MacCoss, M. J., et al., Aminoglycoside antibiotics induce biofilm formation, Nature, 2005, vol. 436, pp. 1171–1175.CrossRefPubMedGoogle Scholar
  31. 31.
    Linares, J. F., Gustaffson, I., Baquero, F., and Martinez, J. L., Antibiotics as intermicrobial signaling agents instead of weapons, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 19484–19489.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Zaitseva, J., Granik, V., Belik, A., et al., Effect of nitrofurans and NOgenerators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370, Res. Microbiol., 2009, vol. 160, pp. 353–357.Google Scholar
  33. 33.
    Plyuta, V. A., Lipasova, V. A., Kuznetsov, A. E., and Khmel’, I. A., Effect of salicylic, indolil-3-acetic, gibberellic, and abscisic acids on biofilm formation by Agrobacterium tumefaciens C58 and Pseudomonas aeruginosa PAO1, Biotekhnologia, 2012, no. 3, pp. 53–58.Google Scholar
  34. 34.
    Plyuta, V. A., Zaitseva, J., Lobakova, E., et al., Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa, APMIS, 2013, vol. 121, pp. 1073–1081.CrossRefPubMedGoogle Scholar
  35. 35.
    Busse, H. J., Denner, E. B., and Lubitz, W., Classification and identification of bacteria: current approaches to an old problem: overview of methods used in bacterial systematics, J. Biotechnol., 1996, vol. 47, pp. 3–38.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • V. A. Plyuta
    • 1
    • 2
  • V. A. Lipasova
    • 1
  • O. A. Koksharova
    • 1
    • 3
  • M. A. Veselova
    • 1
  • A. E. Kuznetsov
    • 2
  • I. A. Khmel
    • 1
    Email author
  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Belozersky Institute of Physical and Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations