Russian Journal of Genetics

, Volume 51, Issue 6, pp 529–544 | Cite as

Ancient DNA: Results and prospects (The 30th anniversary)

  • A. S. Druzhkova
  • N. V. Vorobieva
  • V. A. Trifonov
  • A. S. Graphodatsky
Reviews and Theoretical Articles

Abstract

Evolutionary genetics has reached a new level of research thanks to the opportunity to study the genomes of not only present-day but also of ancient organisms. The obtaining of reliable data when working with ancient DNA is possible only in the case of interdisciplinary collaboration between archaeologists, paleontologists, molecular geneticists, and bioinformaticians. Despite laborious and high-cost technologies, the results never cease to amaze and can not only fill the gaps in the knowledge of the evolutionary history of different species but can also review the existing ideas on population development and dynamics. In this review, we discuss the history of the development of investigative techniques in ancient DNA research and the most striking results of these studies, including the most recent achievements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Higuchi, R., Genetic study on the congenital dislocation of the hip, Bull. Tokyo Med. Dent. Univ., 1984, vol. 31, no. 4, pp. 195–207.PubMedGoogle Scholar
  2. 2.
    Pääbo, S., Molecular cloning of Ancient Egyptian mummy DNA, Nature, 1985, vol. 314, no. 6012, pp. 644–645.PubMedGoogle Scholar
  3. 3.
    Pääbo, S., Kampe, O., Severinsson, L., et al., The association between class-I transplantation antigens and an adenovirus membrane protein, Prog. Allergy, 1985, vol. 36, pp. 114–134.PubMedGoogle Scholar
  4. 4.
    Pääbo, S., Molecular genetic investigations of ancient human remains, Cold Spring. Harb. Symp. Quant. Biol., 1986, vol. 51, pp. 441–446.PubMedGoogle Scholar
  5. 5.
    Mullis, K.B. and Faloona, F.A., Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods Enzymol., 1987, vol. 155, pp. 335–350.PubMedGoogle Scholar
  6. 6.
    Pääbo, S., Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification, Proc. Natl. Acad. Sci. U.S.A., 1989, vol. 86, no. 6, pp. 1939–1943.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Golenberg, E.M., Giannasi, D.E., Clegg, M.T., et al., Chloroplast DNA sequence from a Miocene Magnolia species, Nature, 1990, vol. 344, no. 6267, pp. 656–658.PubMedGoogle Scholar
  8. 8.
    Soltis, P.S.S.D. and Smiley, C.J., An rbcL sequence from a Miocene Taxodium (bald cypress), Proc. Natl. Acad. Sci. U.S.A., 1992, vol. 89, pp. 449–451.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Willerslev, E., Hansen, A.J., and Poinar, H.N., Isolation of nucleic acids and cultures from fossil ice and permafrost, Trends Ecol. Evol., 2004, vol. 19, no. 3, pp. 141–147.PubMedGoogle Scholar
  10. 10.
    Pääbo, S., Poinar, H., Serre, D., et al., Genetic analyses from ancient DNA, Ann. Rev. Genet., 2004, vol. 38, pp. 645–679.PubMedGoogle Scholar
  11. 11.
    Hofreiter, M., Serre, D., Poinar, H.N., et al., Ancient DNA, Nat. Rev. Genet., 2001, vol. 2, no. 5, pp. 353–359.PubMedGoogle Scholar
  12. 12.
    Willerslev, E. and Cooper, A., Ancient DNA, Proc. Biol. Sci., 2005, vol. 272, no. 1558, pp. 3–16.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Thomas, R.H., Schaffner, W., Wilson, A.C., and Pääbo, S., DNA phylogeny of the extinct marsupial wolf, Nature, 1989, vol. 340, no. 6233, pp. 465–467.PubMedGoogle Scholar
  14. 14.
    Krajewski, C., Buckley, L., and Westerman, M., DNA phylogeny of the marsupial wolf resolved, Proc. Biol. Sci., 1997, vol. 264, no. 1383, pp. 911–917.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Cooper, A., Lalueza-Fox, C., Anderson, S., et al., Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution, Nature, 2001, vol. 409, no. 6821, pp. 704–707.PubMedGoogle Scholar
  16. 16.
    Greenwood, A.D., Castresana, J., Feldmaier-Fuchs, G., and Pääbo, S., A molecular phylogeny of two extinct sloths, Mol. Phylogenet. Evol., 2001, vol. 18, no. 1, pp. 94–103.PubMedGoogle Scholar
  17. 17.
    Paxinos, E.E., James, H.F., Olson, S.L., et al., mtDNA from fossils reveals a radiation of Hawaiian geese recently derived from the Canada goose (Branta canadensis), Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 3, pp. 1399–1404.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Hanni, C., Laudet, V., Stehelin, D., and Taberlet, P., Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 25, pp. 12336–12340.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Ramirez, O., Gigli, E., Bover, P., et al., Paleogenomics in a temperate environment: shotgun sequencing from an extinct Mediterranean caprine, PLoS One, 2009, vol. 4, no. 5. e5670PubMedCentralPubMedGoogle Scholar
  20. 20.
    Orlando, L., Calvignac, S., Schnebelen, C., et al., DNA from extinct giant lemurs links archaeolemurids to extant indriids, BMC Evol. Biol., 2008, vol. 8, p. 121.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Driscoll, C.A., Yamaguchi, N., Bar-Gal, G.K., et al., Mitochondrial phylogeography illuminates the origin of the extinct Caspian tiger and its relationship to the Amur tiger, PLoS One, 2009, vol. 4, no. 1. e4125PubMedCentralPubMedGoogle Scholar
  22. 22.
    Thomas, W.K., Pääbo, S., Villablanca, F.X., and Wilson, A.C., Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens, J. Mol. Evol., 1990, vol. 31, no. 2, pp. 101–112.PubMedGoogle Scholar
  23. 23.
    Pergams, O.R., Barnes, W.M., and Nyberg, D., Mammalian microevolution: rapid change in mouse mitochondrial DNA, Nature, 2003, vol. 423, no. 6938, p. 397.PubMedGoogle Scholar
  24. 24.
    Hardy, C., Callou, C., Vigne, J.D., et al., Rabbit mitochondrial DNA diversity from prehistoric to modern times, J. Mol. Evol., 1995, vol. 40, no. 3, pp. 227–237.PubMedGoogle Scholar
  25. 25.
    Hadly, E.A., Kohn, M.H., Leonard, J.A., and Wayne, R.K., A genetic record of population isolation in pocket gophers during Holocene climatic change, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 12, pp. 6893–6896.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Wisely, S.M., Buskirk, S.W., Fleming, M.A., et al., Genetic diversity and fitness in black-footed ferrets before and during a bottleneck, J. Hered., 2002, vol. 93, no. 4, pp. 231–237.PubMedGoogle Scholar
  27. 27.
    Larson, S., Jameson, R., Etnier, M., et al., Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries, Mol. Ecol., 2002, vol. 11, no. 10, pp. 1899–1903.PubMedGoogle Scholar
  28. 28.
    Miller, C.R. and Waits, L.P., The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, no. 7, pp. 4334–4339.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Hale, M.L., Lurz, P.W., Shirley, M.D., et al., Impact of landscape management on the genetic structure of red squirrel populations, Science, 2001, vol. 293, no. 5538, pp. 2246–2248.PubMedGoogle Scholar
  30. 30.
    Verginelli, F., Capelli, C., Coia, V., et al., Mitochondrial DNA from prehistoric canids highlights relationships between dogs and South-East European wolves, Mol. Biol. Evol., 2005, vol. 22, no. 12, pp. 2541–2551.PubMedGoogle Scholar
  31. 31.
    Lambert, D.M., Ritchie, P.A., Millar, C.D., et al., Rates of evolution in ancient DNA from Adelie penguins, Science, 2002, vol. 295, no. 5563, pp. 2270–2273.PubMedGoogle Scholar
  32. 32.
    Dalen, L., Nystrom, V., Valdiosera, C., et al., Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 16, pp. 6726–6729.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Debruyne, R., Chu, G., King, C.E., et al., Out of America: ancient DNA evidence for a new world origin of late quaternary woolly mammoths, Curr. Biol., 2008, vol. 18, no. 17, pp. 1320–1326.PubMedGoogle Scholar
  34. 34.
    Krause, J., Unger, T., Nocon, A., et al., Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary, BMC Evol. Biol., 2008, vol. 12, no. 8, pp. 220–232.Google Scholar
  35. 35.
    Leonard, J.A., Rohland, N., Glaberman, S., et al., A rapid loss of stripes: the evolutionary history of the extinct quagga, Biol. Lett., 2005, vol. 1, no. 3, pp. 291–295.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Steeves, T.E., Holdaway, R.N., Hale, M.L., et al., Merging ancient and modern DNA: extinct seabird taxon rediscovered in the North Tasman Sea, Biol. Lett., 2010, vol. 6, no. 1, pp. 94–97.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Seabrook-Davison, M., Huynen, L., Lambert, D.M., and Brunton, D.H., Ancient DNA resolves identity and phylogeny of New Zealand’s extinct and living quail (Coturnix sp.), PLoS One, 2009, vol. 4, no. 7.Google Scholar
  38. 38.
    Vorobieva, N.V., Sherbakov, D.Y., Druzhkova, A.S., et al., Genotyping of Capreolus pygargus fossil DNA from Denisova Cave reveals phylogenetic relationships between ancient and modern populations, PLoS One, 2011, vol. 6, no. 8.Google Scholar
  39. 39.
    Poinar, H.N., Hoss, M., Bada, J.L., and Pääbo, S., Amino acid racemization and the preservation of ancient DNA, Science, 1996, vol. 272, no. 5263, pp. 864–866.PubMedGoogle Scholar
  40. 40.
    Smith, C.I., Chamberlain, A.T., Riley, M.S., et al., Neanderthal DNA: not just old but old and cold?, Nature, 2001, vol. 410, no. 6830, pp. 771–772.PubMedGoogle Scholar
  41. 41.
    Lambert, J.B., Frue, J.S., and Pionar, G.O., Analysis of North American amber by carbon-13 NMR spectroscopy, Geoarcheology, 1990, vol. 5, pp. 43–52.Google Scholar
  42. 42.
    Hoss, M., Pääbo, S., and Vereshchagin, N.K., Mammoth DNA sequences, Nature, 1994, vol. 370, no. 6488, p. 333.PubMedGoogle Scholar
  43. 43.
    Gilbert, M.T., Wilson, A.S., Bunce, M., et al., Ancient mitochondrial DNA from hair, Curr. Biol., 2004, vol. 14, no. 12, pp. R463–R464.PubMedGoogle Scholar
  44. 44.
    Willerslev, E., Cappellini, E., Boomsma, W., et al., Ancient biomolecules from deep ice cores reveal a forested southern Greenland, Science, 2007, vol. 317, no. 5834, pp. 111–114.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Orlando, L., Ginolhac, A., Zhang, G., et al., Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse, Nature, 2013, vol. 499, no. 7456, pp. 74–78.PubMedGoogle Scholar
  46. 46.
    Valdiosera, C., Garcia, N., Dalen, L., et al., Typing single polymorphic nucleotides in mitochondrial DNA as a way to access Middle Pleistocene DNA, Biol. Lett., 2006, vol. 2, no. 4, pp. 601–603.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Dabney, J., Knapp, M., Glocke, I., et al., Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 39, pp. 15758–15763.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Poinar, H., Kuch, M., McDonald, G., et al., Nuclear gene sequences from a Late Pleistocene sloth coprolite, Curr. Biol., 2003, vol. 13, no. 13, pp. 1150–1152.PubMedGoogle Scholar
  49. 49.
    Willerslev, E. and Cooper, A., Ancient DNA, Proc. R. Soc. London, Ser. B, 2005, vol. 272, no. 1558, pp. 3–16.Google Scholar
  50. 50.
    Pääbo, S., Poinar, H., Serre, D., et al., Genetic analyses from ancient DNA, Annu. Rev. Genet., 2004, vol. 38, pp. 645–679.PubMedGoogle Scholar
  51. 51.
    Hofreiter, M., Jaenicke, V., Serre, D., et al., DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA, Nucleic Acids Res., 2001, vol. 29, no. 23, pp. 4793–4799.PubMedCentralPubMedGoogle Scholar
  52. 52.
    Pusch, C.M., Giddings, I., and Scholz, M., Repair of degraded duplex DNA from prehistoric samples using Escherichia coli DNA polymerase I and T4 DNA ligase, Nucleic Acids Res., 1998, vol. 26, no. 3, pp. 857–859.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Krause, J., Dear, P.H., Pollack, J.L., et al., Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae, Nature, 2006, vol. 439, no. 7077, pp. 724–727.PubMedGoogle Scholar
  54. 54.
    Vestheim, H. and Jarman, S.N., Blocking primers to enhance PCR amplification of rare sequences in mixed samples-a case study on prey DNA in Antarctic krill stomachs, Front Zool., 2008, vol. 5, pp. 12–19.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Gigli, E.R.M., Civit, S., Rosas, A., et al., An improved PCR method for endogenous DNA retrieval in contaminated Neanderthal samples based on the use of blocking primers, J. Archaeol. Sci., 2009, vol. 36, pp. 1466–1473.Google Scholar
  56. 56.
    Gilbert, M.T.P., Tomsho, L.P., Rendulic, S., et al., Whole-genome shotgun sequencing of mitochondria from ancient hair shafts, Science, 2007, vol. 317, no. 5846, pp. 1927–1930.PubMedGoogle Scholar
  57. 57.
    Margulies, M., Egholm, M., Altman, W.E., et al., Genome sequencing in microfabricated high-density picolitre reactors, Nature, 2005, vol. 437, no. 7057, pp. 376–380.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Metzker, M.L., Next generation technologies: basics and applications, Environ. Mol. Mutagen., 2010, vol. 51, no. 7, p. 691.Google Scholar
  59. 59.
    Ku, C.S. and Roukos, D.H., From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine, Expert Rev. Med. Devices, 2013, vol. 10, no. 1, pp. 1–6.PubMedGoogle Scholar
  60. 60.
    Mardis, E.R., Next-generation DNA sequencing methods, Annu. Rev. Genomics Hum. Genet., 2008, vol. 9, pp. 387–402.PubMedGoogle Scholar
  61. 61.
    Rothberg, J.M., Hinz, W., Rearick, T.M., et al., An integrated semiconductor device enabling non-optical genome sequencing, Nature, 2011, vol. 475, no. 7356, pp. 348–352.PubMedGoogle Scholar
  62. 62.
    Natal’in, P.B. and Belyakin, S.N., Modern technologies of DNA sequencing in epigenetics, in Epigenetika (Epigenetics), Zakiyan, S.M., Vlasov, V.V., and Dement’eva, E.V., Eds., Novosibirsk: Sib. Otdel. Ross. Akad. Nauk, 2012, pp. 535–561.Google Scholar
  63. 63.
    Green, R.E., Krause, J., Briggs, A.W., et al., A draft sequence of the Neanderthal genome, Science, 2010, vol. 328, no. 5979, pp. 710–722.PubMedGoogle Scholar
  64. 64.
    Reich, D., Green, R.E., Kircher, M., et al., Genetic history of an archaic hominin group from Denisova Cave in Siberia, Nature, 2010, vol. 468, no. 7327, pp. 1053–1060.PubMedCentralPubMedGoogle Scholar
  65. 65.
    Gilbert, M.T.P., Rudbeck, L., Willerslev, E., et al., Biochemical and physical correlates of DNA contamination in archaeological human bones and teeth excavated at Matera, Italy, J. Archaeol. Sci., 2005, vol. 32, no. 5, pp. 785–793.Google Scholar
  66. 66.
    Rizzi, E., Lari, M., Gigli, E., et al., Ancient DNA studies: new perspectives on old samples, Genet. Sel. Evol., 2012, vol. 44, p. 21.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Gansauge, M.T. and Meyer, M., Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA, Nat. Protoc., 2013, vol. 8, no. 4, pp. 737–748.PubMedGoogle Scholar
  68. 68.
    Gilbert, M.T., Binladen, J., Miller, W., et al., Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis, Nucleic Acids Res., 2007, vol. 35, no. 1, pp. 1–10.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Stiller, M., Green, R.E., Ronan, M., et al., Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 37, pp. 13578–13584.PubMedCentralPubMedGoogle Scholar
  70. 70.
    Briggs, A.W., Stenzel, U., Johnson, P.L., et al., Patterns of damage in genomic DNA sequences from a Neanderthal, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 37, pp. 14616–14621.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Brotherton, P., Endicott, P., Sanchez, J.J., et al., Novel high-resolution characterization of ancient DNA reveals C>U-type base modification events as the sole cause of post mortem miscoding lesions, Nucleic Acids Res., 2007, vol. 35, no. 17, pp. 5717–5728.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Orlando, L., Ginolhac, A., Raghavan, M., et al., True single-molecule DNA sequencing of a Pleistocene horse bone, Genome Res., 2011, vol. 21, no. 10, pp. 1705–1719.PubMedCentralPubMedGoogle Scholar
  73. 73.
    Summerer, D., Enabling technologies of genomicscale sequence enrichment for targeted high-throughput sequencing, Genomics, 2009, vol. 94, no. 6, pp. 363–368.PubMedGoogle Scholar
  74. 74.
    Mamanova, L., Coffey, A.J., Scott, C.E., et al., Targetenrichment strategies for next-generation sequencing, Nat. Methods, 2010, vol. 7, no. 2, pp. 111–118.PubMedGoogle Scholar
  75. 75.
    Stiller, M., Knapp, M., Stenzel, U., et al., Direct multiplex sequencing (DMPS)-a novel method for targeted high-throughput sequencing of ancient and highly degraded DNA, Genome Res., 2009, vol. 19, no. 10, pp. 1843–1848.PubMedCentralPubMedGoogle Scholar
  76. 76.
    Briggs, A.W., Good, J.M., Green, R.E., et al., Targeted retrieval and analysis of five Neanderthal mtDNA genomes, Science, 2009, vol. 325, no. 5938, pp. 318–321.PubMedGoogle Scholar
  77. 77.
    Maricic, T., Whitten, M., and Pääbo, S., Multiplexed DNA sequence capture of mitochondrial genomes using PCR products, PLoS One, 2010, vol. 5, no. 11. e14004PubMedCentralPubMedGoogle Scholar
  78. 78.
    Gnirke, A., Melnikov, A., Maguire, J., et al., Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing, Nat. Biotechnol., 2009, vol. 27, no. 2, pp. 182–189.PubMedCentralPubMedGoogle Scholar
  79. 79.
    Avila-Arcos, M.C., Cappellini, E., Romero-Navarro, J.A., et al., Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA, Sci. Rep., 2011, vol. 1, p. 74.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Bos, K.I., Schuenemann, V.J., Golding, G.B., et al., A draft genome of Yersinia pestis from victims of the black death, Nature, 2011, vol. 478, no. 7370, pp. 506–510.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Burbano, H.A., Hodges, E., Green, R.E., et al., Targeted investigation of the Neanderthal genome by array-based sequence capture, Science, 2010, vol. 328, no. 5979, pp. 723–725.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Paijmans, J.L., Gilbert, M.T., and Hofreiter, M., Mitogenomic analyses from ancient DNA, Mol. Phylogenet. Evol., 2013, vol. 69, no. 2, pp. 404–416.PubMedGoogle Scholar
  83. 83.
    Ginolhac, A., Vilstrup, J., Stenderup, J., et al., Improving the performance of true single molecule sequencing for ancient DNA, BMC Genomics, 2012, vol. 13, p. 177.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Hagelberg, E., Thomas, M.G., Cook, C.E., Jr., et al., DNA from ancient mammoth bones, Nature, 1994, vol. 370, no. 6488, pp. 333–334.PubMedGoogle Scholar
  85. 85.
    Barriel, V., Thuet, E., and Tassy, P., Molecular phylogeny of Elephantidae: extreme divergence of the extant forest African elephant, C. R. Acad. Sci. III, 1999, vol. 322, no. 6, pp. 447–454.PubMedGoogle Scholar
  86. 86.
    Debruyne, R., Barriel, V., and Tassy, P., Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae, Mol. Phylogenet. Evol., 2003, vol. 26, no. 3, pp. 421–434.PubMedGoogle Scholar
  87. 87.
    Thomas, M.G., Hagelberg, E., Jone, H.B., et al., Molecular and morphological evidence on the phylogeny of the Elephantidae, Proc. Biol. Sci., 2000, vol. 267, no. 1461, pp. 2493–2500.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Ozawa, T., Hayashi, S., and Mikhelson, V.M., Phylogenetic position of Mammoth and Steller’s sea cow within Tethytheria demonstrated by mitochondrial DNA sequences, J. Mol. Evol., 1997, vol. 44, no. 4, pp. 406–413.PubMedGoogle Scholar
  89. 89.
    Rohland, N., Reich, D., Mallick, S., et al., Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants, PLoS Biol., 2010, vol. 8, no. 12. e1000564PubMedCentralPubMedGoogle Scholar
  90. 90.
    Phillips, M.J., Gibb, G.C., Crimp, E.A., and Penny, D., Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites, Syst. Biol., 2010, vol. 59, no. 1, pp. 90–107.PubMedGoogle Scholar
  91. 91.
    Bon, C., Berthonaud, V., Maksud, F., et al., Coprolites as a source of information on the genome and diet of the cave hyena, Proc. Biol. Sci., 2012, vol. 279, no. 1739, pp. 2825–2830.PubMedCentralPubMedGoogle Scholar
  92. 92.
    Miller, W., Drautz, D.I., Janecka, J.E., et al., The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus), Genome Res., 2009, vol. 19, no. 2, pp. 213–220.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Orlando, L., Leonard, J.A., Thenot, A., et al., Ancient DNA analysis reveals woolly rhino evolutionary relationships, Mol. Phylogenet. Evol., 2003, vol. 28, no. 3, pp. 485–499.PubMedGoogle Scholar
  94. 94.
    Willerslev, E., Gilbert, M.T., Binladen, J., et al., Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution, BMC Evol. Biol., 2009, vol. 9, p. 95.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Lindqvist, C., Schuster, S.C., Sun, Y., et al., Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 11, pp. 5053–5057.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Shields, G.F., Adams, D., Garner, G., et al., Phylogeography of mitochondrial DNA variation in brown bears and polar bears, Mol. Phylogenet. Evol., 2000, vol. 15, no. 2, pp. 319–326.PubMedGoogle Scholar
  97. 97.
    Hailer, F., Kutschera, V.E., Hallstrom, B.M., et al., Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage, Science, 2012, vol. 336, no. 6079, pp. 344–347.PubMedGoogle Scholar
  98. 98.
    Edwards, C.J., Suchard, M.A., Lemey, P., et al., Ancient hybridization and an Irish origin for the modern polar bear matriline, Curr. Biol., 2011, vol. 21, no. 15, pp. 1251–1258.PubMedGoogle Scholar
  99. 99.
    Enk, J., Devault, A., Debruyne, R., et al., Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths, Genome Biol., 2011, vol. 12, no. 5, p. R51.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Debruyne, R., A case study of apparent conflict between molecular phylogenies: the interrelationships of African elephants, Cladistics, 2005, vol. 21, no. 1, pp. 31–50.Google Scholar
  101. 101.
    Ho, S.Y., Kolokotronis, S.O., and Allaby, R.G., Elevated substitution rates estimated from ancient DNA sequences, Biol. Lett., 2007, vol. 3, no. 6, pp. 702–705.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Ho, S.Y., Shapiro, B., Phillips, M.J., et al., Evidence for time dependency of molecular rate estimates, Syst. Biol., 2007, vol. 56, no. 3, pp. 515–522.PubMedGoogle Scholar
  103. 103.
    Brown, W.M., George, M., Jr., and Wilson, A.C., Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. U.S.A., 1979, vol. 76, no. 4, pp. 1967–1971.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Subramanian, S., Denver, D.R., Millar, C.D., et al., High mitogenomic evolutionary rates and time dependency, Trends Genet., 2009, vol. 25, no. 11, pp. 482–486.PubMedGoogle Scholar
  105. 105.
    Lerner, H.R., Meyer, M., James, H.F., et al., Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers, Curr. Biol., 2011, vol. 21, no. 21, pp. 1838–1844.PubMedGoogle Scholar
  106. 106.
    Bailey, J.F., Richards, M.B., Macaulay, V.A., et al., Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species, Proc. Biol. Sci., 1996, vol. 263, no. 1376, pp. 1467–1473.PubMedGoogle Scholar
  107. 107.
    Troy, C.S., Machugh, D.E., Bailey, J.F., et al., Genetic evidence for Near-Eastern origins of European cattle, Nature, 2001, vol. 410, no. 6832, pp. 1088–1091.PubMedGoogle Scholar
  108. 108.
    Anderung, C., Bouwman, A., Persson, P., et al., Prehistoric contacts over the Straits of Gibraltar indicated by genetic analysis of Iberian bronze age cattle, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 24, pp. 8431–8435.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Beja-Pereira, A., Caramelli, D., Lalueza-Fox, C., et al., The origin of European cattle: evidence from modern and ancient DNA, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 21, pp. 8113–8118.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Bollongino, R., Edwards, C.J., Alt, K.W., et al., Early history of European domestic cattle as revealed by ancient DNA, Biol. Lett., 2006, vol. 2, no. 1, pp. 155–159.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Edwards, C.J., Bollongino, R., Scheu, A., et al., Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs, Proc. Biol. Sci., 2007, vol. 274, no. 1616, pp. 1377–1385.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Mona, S., Catalano, G., Lari, M., et al., Population dynamic of the extinct European aurochs: genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion, BMC Evol. Biol., 2010, vol. 10, p. 83.PubMedCentralPubMedGoogle Scholar
  113. 113.
    Achilli, A., Olivieri, A., Pellecchia, M., et al., Mitochondrial genomes of extinct aurochs survive in domestic cattle, Curr. Biol., 2008, vol. 18, no. 4, pp. R157–R158.PubMedGoogle Scholar
  114. 114.
    Achilli, A., Bonfiglio, S., Olivieri, A., et al., The multifaceted origin of taurine cattle reflected by the mitochondrial genome, PLoS One, 2009, vol. 4, no. 6. e5753PubMedCentralPubMedGoogle Scholar
  115. 115.
    Bonfiglio, S., Achilli, A., Olivieri, A., et al., The enigmatic origin of bovine mtDNA haplogroup R: sporadic interbreeding or an independent event of Bos primigenius domestication in Italy?, PLoS One, 2010, vol. 5, no. 12. e15760PubMedCentralPubMedGoogle Scholar
  116. 116.
    Greenwood, A.D., Capelli, C., Possnert, G., and Pääbo, S., Nuclear DNA sequences from Late Pleistocene megafauna, Mol. Biol. Evol., 1999, vol. 16, no. 11, pp. 1466–1473.PubMedGoogle Scholar
  117. 117.
    Jaenicke-Despres, V., Buckler, E.S., Smith, B.D., et al., Early allelic selection in maize as revealed by ancient DNA, Science, 2003, vol. 302, no. 5648, pp. 1206–1208.PubMedGoogle Scholar
  118. 118.
    Bunce, M., Worthy, T.H., Ford, T., et al., Extreme reversed sexual size dimorphism in the extinct New Zealand moa Dinornis, Nature, 2003, vol. 425, no. 6954, pp. 172–175.PubMedGoogle Scholar
  119. 119.
    Huynen, L., Millar, C.D., Scofield, R.P., and Lambert, D.M., Nuclear DNA sequences detect species limits in ancient moa, Nature, 2003, vol. 425, no. 6954, pp. 175–178.PubMedGoogle Scholar
  120. 120.
    Bollongino, R., Elsner, J., Vigne, J.D., and Burger, J., Y-SNPs do not indicate hybridization between European aurochs and domestic cattle, PLoS One, 2008, vol. 3, no. 10. e3418PubMedCentralPubMedGoogle Scholar
  121. 121.
    Gotherstrom, A., Anderung, C., Hellborg, L., et al., Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe, Proc. Biol. Sci., 2005, vol. 272, no. 1579, pp. 2345–2350.PubMedCentralPubMedGoogle Scholar
  122. 122.
    Larson, G., Dobney, K., Albarella, U., et al., Worldwide phylogeography of wild boar reveals multiple centers of pig domestication, Science, 2005, vol. 307, no. 5715, pp. 1618–1621.PubMedGoogle Scholar
  123. 123.
    Larson, G., Albarella, U., Dobney, K., et al., Ancient DNA, pig domestication, and the spread of the Neolithic into Europe, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 39, pp. 15276–15281.PubMedCentralPubMedGoogle Scholar
  124. 124.
    Vila, C., Leonard, J.A., Gotherstrom, A., et al., Widespread origins of domestic horse lineages, Science, 2001, vol. 291, no. 5503, pp. 474–477.PubMedGoogle Scholar
  125. 125.
    Cieslak, M., Pruvost, M., Benecke, N., et al., Origin and history of mitochondrial DNA lineages in domestic horses, PLoS One, 2010, vol. 5, no. 12. e15311PubMedCentralPubMedGoogle Scholar
  126. 126.
    Pang, J.F., Kluetsch, C., Zou, X.J., et al., mtDNA data indicate a single origin for dogs south of Yangtze River, less than 16300 years ago, from numerous wolves, Mol. Biol. Evol., 2009, vol. 26, no. 12, pp. 2849–2864.PubMedCentralPubMedGoogle Scholar
  127. 127.
    Druzhkova, A.S., Thalmann, O., Trifonov, V.A., et al., Ancient DNA analysis affirms the canid from Altai as a primitive dog, PLoS One, 2013, vol. 8, no. 3. e57754PubMedCentralPubMedGoogle Scholar
  128. 128.
    Thalmann, O., Shapiro, B., Cui, P., et al., Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs, Science, 2013, vol. 342, no. 6160, pp. 871–874.PubMedGoogle Scholar
  129. 129.
    Brown, T.A., Allaby, R.G., Brown, K.A., and Jones, M.K., Biomolecular archaeology of wheat: past, present and future, World Archaeol., 1993, vol. 25, no. 1, pp. 64–73.PubMedGoogle Scholar
  130. 130.
    Brown, T.A., Allaby, R.G., Brown, K.A., et al., DNA in wheat seeds from European archaeological sites, Experientia, 1994, vol. 50, no. 6, pp. 571–575.PubMedGoogle Scholar
  131. 131.
    Jones, M. and Brown, T., Agricultural origins: the evidence of modern and ancient DNA, Holocene, 2000, vol. 10, no. 6, pp. 769–776.Google Scholar
  132. 132.
    Parducci, L. and Petit, R.J., Ancient DNA-unlocking plants’ fossil secrets, New Phytol., 2004, vol. 161, no. 2, pp. 335–339.Google Scholar
  133. 133.
    Bennett, K.D. and Parducci, L., DNA from pollen: principles and potential, Holocene, 2006, vol. 16, no. 8, pp. 1031–1034.Google Scholar
  134. 134.
    Wang, R.L., Stec, A., Hey, J., et al., The limits of selection during maize domestication, Nature, 1999, vol. 398, no. 6724, pp. 236–239.PubMedGoogle Scholar
  135. 135.
    Whitt, S.R., Wilson, L.M., Tenaillon, M.I., et al., Genetic diversity and selection in the maize starch pathway, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 20, pp. 12959–12962.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Wang, H., Nussbaum-Wagler, T., Li, B.L., et al., The origin of the naked grains of maize, Nature, 2005, vol. 436, no. 7051, pp. 714–719.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Vouillamoz, J.F. and Grando, M.S., Genealogy of wine grape cultivars: “Pinot” is related to “Syrah,” Heredity, 2006, vol. 97, no. 2, pp. 102–110.PubMedGoogle Scholar
  138. 138.
    Witas, H.W., Tomczyk, J., Jedrychowska-Danska, K., et al., mtDNA from the early Bronze Age to the Roman period suggests a genetic link between the Indian subcontinent and Mesopotamian cradle of civilization, PLoS One, 2013, vol. 8, no. 9. e73682PubMedCentralPubMedGoogle Scholar
  139. 139.
    Rasmussen, M., Guo, X., Wang, Y., et al., An aboriginal Australian genome reveals separate human dispersals into Asia, Science, 2011, vol. 334, no. 6052, pp. 94–98.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Vernesi, C., Caramelli, D., Dupanloup, I., et al., The Etruscans: a population-genetic study, Am. J. Hum. Genet., 2004, vol. 74, no. 4, pp. 694–704.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Guimaraes, S., Ghirotto, S., Benazzo, A., et al., Genealogical discontinuities among Etruscan, Medieval, and contemporary Tuscans, Mol. Biol. Evol., 2009, vol. 26, no. 9, pp. 2157–2166.PubMedGoogle Scholar
  142. 142.
    Endicott, P., Gilbert, M.T., Stringer, C., et al., The genetic origins of the Andaman islanders, Am. J. Hum. Genet., 2003, vol. 72, no. 1, pp. 178–184.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Caramelli, D., Lalueza-Fox, C., Capelli, C., et al., Genetic analysis of the skeletal remains attributed to Francesco Petrarca, Forensic Sci. Int., 2007, vol. 173, no. 1, pp. 36–40.PubMedGoogle Scholar
  144. 144.
    Sampietro, M.L., Caramelli, D., Lao, O., et al., The genetics of the pre-Roman Iberian Peninsula: a mtDNA study of ancient Iberians, Ann. Hum. Genet., 2005, vol. 69, vol. 5, pp. 535–548.PubMedGoogle Scholar
  145. 145.
    Haak, W., Forster, P., Bramanti, B., et al., Ancient DNA from the first European farmers in 7500-year-old Neolithic sites, Science, 2005, vol. 310, no. 5750, pp. 1016–1018.PubMedGoogle Scholar
  146. 146.
    Bramanti, B., Thomas, M.G., Haak, W., et al., Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers, Science, 2009, vol. 326, no. 5949, pp. 137–140.PubMedGoogle Scholar
  147. 147.
    Haak, W.B.O., Sanchez, J.J., Koshel, S., et al., Members of the Genographic Consortium: ancient DNA from European early Neolithic farmers reveals their near eastern affinities, PLoS Biol., 2010, vol. 8. e1000536PubMedCentralPubMedGoogle Scholar
  148. 148.
    Malmstrom, H., Gilbert, M.T., Thomas, M.G., et al., Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians, Curr. Biol., 2009, vol. 19, no. 20, pp. 1758–1762.PubMedGoogle Scholar
  149. 149.
    Krause, J., Briggs, A.W., Kircher, M., et al., A complete mtDNA genome of an early modern human from Kostenki, Russia, Curr. Biol., 2010, vol. 20, no. 3, pp. 231–236.Google Scholar
  150. 150.
    Ermini, L., Olivieri, C., Rizzi, E., et al., Complete mitochondrial genome sequence of the Tyrolean Iceman, Curr. Biol., 2008, vol. 18, no. 21, pp. 1687–1693.PubMedGoogle Scholar
  151. 151.
    Gibbons, A., Human evolution: oldest Homo sapiens genome pinpoints Neanderthal input, Science, 2014, vol. 343, no. 6178, p. 1417.PubMedGoogle Scholar
  152. 152.
    Gilbert, M.T., Kivisild, T., Gronnow, B., et al., Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland, Science, 2008, vol. 320, no. 5884, pp. 1787–1789.PubMedGoogle Scholar
  153. 153.
    Rasmussen, M., Li, Y.R., Lindgreen, S., et al., Ancient human genome sequence of an extinct palaeo-Eskimo, Nature, 2010, vol. 463, no. 7282, pp. 757–762.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Cui, Y., Lindo, J., Hughes, C.E., et al., Ancient DNA analysis of mid-Holocene individuals from the Northwest Coast of North America reveals different evolutionary paths for mitogenomes, PLoS One, 2013, vol. 8, no. 7. e66948PubMedCentralPubMedGoogle Scholar
  155. 155.
    Evans, P.D., Gilbert, S.L., Mekel-Bobrov, N., et al., Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans, Science, 2005, vol. 309, no. 5741, pp. 1717–1720.PubMedGoogle Scholar
  156. 156.
    Evans, P.D., Mekel-Bobrov, N., Vallender, E.J., et al., Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 48, pp. 18178–18183.PubMedCentralPubMedGoogle Scholar
  157. 157.
    Green, R.E., Krause, J., Ptak, S.E., et al., Analysis of one million base pairs of Neanderthal DNA, Nature, 2006, vol. 444, no. 7117, pp. 330–336.PubMedGoogle Scholar
  158. 158.
    Noonan, J.P., Coop, G., Kudaravalli, S., et al., Sequencing and analysis of Neanderthal genomic DNA, Science, 2006, vol. 314, no. 5802, pp. 1113–1118.PubMedCentralPubMedGoogle Scholar
  159. 159.
    Wall, J.D. and Kim, S.K., Inconsistencies in Neanderthal genomic DNA sequences, PLoS Genet., 2007, vol. 3, no. 10, pp. 1862–1866.PubMedGoogle Scholar
  160. 160.
    Krause, J., Lalueza-Fox, C., Orlando, L., et al., The derived FOXP2 variant of modern humans was shared with Neanderthals, Curr. Biol., 2007, vol. 17, no. 21, pp. 1908–1912.PubMedGoogle Scholar
  161. 161.
    Krause, J., Fu, Q., Good, J.M., et al., The complete mitochondrial DNA genome of an unknown hominin from southern Siberia, Nature, 2010, vol. 464, no. 7290, pp. 894–897.PubMedGoogle Scholar
  162. 162.
    Briggs, A.W., Rapid retrieval of DNA target sequences by primer extension capture, Methods Mol. Biol., 2011, vol. 772, pp. 145–154.PubMedGoogle Scholar
  163. 163.
    Lalueza-Fox, C. and Gilbert, M.T., Paleogenomics of archaic hominins, Curr. Biol., 2011, vol. 21, no. 24, pp. R1002–R1009.PubMedGoogle Scholar
  164. 164.
    Meyer, M., Kircher, M., Gansauge, M.T., et al., A high-coverage genome sequence from an archaic Denisovan individual, Science, 2012, vol. 338, no. 6104, pp. 222–226.PubMedCentralPubMedGoogle Scholar
  165. 165.
    Gokcumen, O., Zhu, Q., Mulder, L.C., et al., Balancing selection on a regulatory region exhibiting ancient variation that predates human-Neanderthal divergence, PLoS Genet., 2013, vol. 9, no. 4. e1003404PubMedCentralPubMedGoogle Scholar
  166. 166.
    Guojie, Z., Zhang, P., Michael, K., et al., Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations, Hum. Mutat., 2010, vol. 31, no. 12, pp. 1286–1293.Google Scholar
  167. 167.
    Guojie, Z., Zhang, P., Edward, V.B., et al., Crosscomparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations, Hum. Genomics, 2011, vol. 5, no. 5, pp. 453–484.Google Scholar
  168. 168.
    Huerta-Sanchez, E., Jin, X., Asan, et al., Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA, Nature, 2014, vol. 512, no. 7513, pp. 194–197.PubMedCentralPubMedGoogle Scholar
  169. 169.
    Anastasiou, E. and Mitchell, P.D., Palaeopathology and genes: investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations, Gene, 2013, vol. 528, no. 1, pp. 33–40.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. S. Druzhkova
    • 1
    • 2
  • N. V. Vorobieva
    • 1
    • 2
  • V. A. Trifonov
    • 1
    • 2
  • A. S. Graphodatsky
    • 1
    • 2
  1. 1.Institute of Molecular and Cellular BiologySiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations