Russian Journal of Genetics

, Volume 50, Issue 11, pp 1125–1136 | Cite as

Construction of highly-effective symbiotic bacteria: Evolutionary models and genetic approaches

  • N. A. Provorov
  • O. P. Onishchuk
  • S. N. Yurgel
  • O. N. Kurchak
  • E. P. Chizhevskaya
  • N. I. Vorobyov
  • T. V. Zatovskaya
  • B. V. Simarov
Reviews and Theoretical Articles


Using the example of N2-fixing legume-rhizobial symbiosis, we demonstrated that the origin and evolution of bacteria symbiotic for plants involve: (i) the formation of novel sym gene systems based on reorganizations of the bacterial genomes and on the gene transfer from the distant organisms; (ii) the loss of genes encoding for functions that are required for autonomous performance but interfere with symbiotic functions (negative regulators of symbiosis). Therefore, the construction of effective rhizobia strains should involve improvement of sym genes activities (for instance, nif, fix, and dct genes encoding for nitrogenase synthesis or for the energy supply of N2 fixation), as well as the inactivation of negative regulators of symbiosis identified in our lab (eff genes encoding for the transport of sugars and the production of polysaccharides and storage compounds, as well as for oxidative-reductive processes).


Leguminous Plant Nodule Bacterium Symbiotic Nitrogen Fixation Effective Symbiotic Symbiotic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Future Agricultural Systems), St. Petersburg: St. Petersburg Gos. Univ., 2009.Google Scholar
  2. 2.
    Tikhonovich, I.A. and Provorov, N.A., Agricultural microbiology as the basis for ecologically sustainable agriculture: fundamental and applied aspects, S-kh. Biol., 2011, no. 3, pp. 3–9.Google Scholar
  3. 3.
    Provorov, N.A. and Vorob’ev, N.I., Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza (Evolutionary Genetics of Plant-Microbe Symbioses), Tikhonovich, I.A., Ed., St. Petersburg: Inform-Navigator, 2012.Google Scholar
  4. 4.
    Franche, C., Lindström, K., and Elmerich, C., Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants, Plant Soil, 2009, vol. 321, pp. 35–59.CrossRefGoogle Scholar
  5. 5.
    Tikhonovich, I.A. and Provorov, N.A., Development of symbiogenetic approaches for studying variation and heredity of superspecies systems, Russ. J. Genet., 2012, vol. 48, no. 4, pp. 357–368.CrossRefGoogle Scholar
  6. 6.
    Provorov, N.A. and Tikhonovich, I.A., Genetic and molecular bases of symbiotic adaptations, Usp. Sovrem. Biol., 2014, vol. 134, no. 3, pp. 211–226.Google Scholar
  7. 7.
    Provorov, N.A., Tsyganova, A.V., Brewin, N.J., et al., Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (mini-review), Symbiosis, 2012, vol. 58, pp. 39–50.CrossRefGoogle Scholar
  8. 8.
    Wilkinson, D.M., The role of seed dispersal in the evolution of mycorrhizae, Oikos, 1997, vol. 78, pp. 394–396.CrossRefGoogle Scholar
  9. 9.
    Downie, J.A. and Young, J.P.W., The ABC of symbiosis, Nature, 2001, vol. 412, pp. 597–598.PubMedCrossRefGoogle Scholar
  10. 10.
    Guo, H., Sun, S., Eardly, D., et al., Genome variation in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti, Genome, 2009, vol. 52, pp. 862–872.PubMedCrossRefGoogle Scholar
  11. 11.
    Pini, F., Galardini, M., Bazzicalupo, M., and Mengoni, A., Plant-bacteria association and symbiosis: are there common genomic traits in Alphaproteobacteria?, Genes, 2011, vol. 2, pp. 1017–1032.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hirsch, A.M., Lum, M.R., and Downie, J.A., What makes the rhizobia-legume symbiosis so special?, Plant Physiol., 2001, vol. 127, pp. 1484–1492.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Maillet, F., Poinsot, V., Andre, O., et al., Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 2011, vol. 469, pp. 58–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Jording, D., Uhde, C., Schmidt, R., and Pühler, A., The C4-dicarboxylate transport system of Rhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa), Experientia, 1994, vol. 5, pp. 874–883.CrossRefGoogle Scholar
  15. 15.
    Bosworth, A.H., Williams, M.K., Albrecht, K.A., et al., Alfalfa yield response to inoculation with the recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3815–3832.PubMedCentralPubMedGoogle Scholar
  16. 16.
    McClung, G., Commercialization of a genetically modified symbiotic nitrogen fixer, Sinorhizobium meliloti, Mitt. Biol. Bundesanst. Land Forstwirtsch., 2000, vol. 380, pp. 100–106.Google Scholar
  17. 17.
    Rastogi, V., Labes, M., Finan, T., and Watson, R., Over-expression of the dctA gene in Rhizobium meliloti: effect on transport of C4 dicarboxylates and symbiotic nitrogen fixation, Can. J. Microbiol., 1992, vol. 38, pp. 555–562.PubMedCrossRefGoogle Scholar
  18. 18.
    Onishchuk, O.P., Vorob’ev, N.I., Provorov, N.A., and Simarov, B.V., Symbiotic activity of alfalfa rhizobia (Sinorhizobium meliloti) strains with genetically modified transport of dicarboxylic acids, Ekol. Genet., 2009, vol. 7, no. 2, pp. 3–10.Google Scholar
  19. 19.
    Provorov, N.A., Chuklina, J., Vorobyov, N.I., et al., Factor analysis of interactions between alfalfa nodule bacteria (Sinorhizobium meliloti) genes that regulate symbiotic nitrogen fixation, Russ. J. Genet., 2013, vol. 49, no. 4, pp. 388–393.CrossRefGoogle Scholar
  20. 20.
    Pankhurst, C.E., Macdonald, P.E., and Reeves, J.M., Enhanced nitrogen fixation and competitiveness for nodulation of Lotus pedunculatus by a plasmid-cured derivative of Rhizobium loti, J. Gen. Microbiol., 1986, vol. 132, pp. 2321–2328.Google Scholar
  21. 21.
    Sharypova, L.A., Onishchuk, O.P., Chesnokova, O.N., et al., Isolation and characterization of Rhizobium meliloti Tn5 mutants showing enhanced symbiotic effectiveness, Microbiology (Moscow), 1994, vol. 140, pp. 463–470.Google Scholar
  22. 22.
    Sharypova L.A. and Simarov B.V., Identification of genes affecting symbiotic effectiveness of Rhizobium meliloti, in Nitrogen Fixation: Fundamentals and Applications, Tikhonovich, I.A., Provorov, N.A., Romanov, V.I., and Newton W., Eds., Dordrecht: Kluwer, 1995, pp. 371–376.Google Scholar
  23. 23.
    Sharypova, L.A., Yurgel, S.N., Keller, M., et al., The eff-482 locus of Sinorhizobium meliloti CXM1-105 that influences symbiotic effectiveness consists of three genes encoding an endoglucanase, a transcriptional regulator and an adenylate cyclase, Mol. Gen. Genet., 1999, vol. 261, pp. 1032–1044.PubMedCrossRefGoogle Scholar
  24. 24.
    Bagirova, S.F., Dzhavakhiya, V.G., D’yakov, Yu.T., et al., Fundamental’naya fitopatologiya (Fundamental Phytopathology), Moscow: Krasand, 2012.Google Scholar
  25. 25.
    Miranda, J., Membrillo-Hernandez, J., Tabche, M.L., and Soberon, M., Rhizobium etli cytochrome mutants with derepressed expression of cytochrome terminal oxidases and enhanced symbiotic nitrogen accumulation, Appl. Microbiol. Biotechnol., 1996, vol. 45, pp. 182–188.CrossRefGoogle Scholar
  26. 26.
    Soberon, M., Lopez, O., Morera, C., et al., Enhanced nitrogen fixation in a Rhizobium etli ntrC mutant that overproduces the Bradyrhizobium japonicum symbiotic terminal oxidase cbb3, Appl. Environ. Microbiol., 1999, vol. 65, pp. 2015–2019.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Soberon, M., Lopez, O., Miranda, J., et al., Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli, Mol. Gen. Genet., 1997, vol. 254, pp. 665–667.PubMedCrossRefGoogle Scholar
  28. 28.
    Soberon, M., Williams, H.D., Poole, R.K., and Escamilla, E., Isolation of a Rhizobium phaseoli cytochrome mutant with enhanced respiration and symbiotic nitrogen fixation, J. Bacteriol., 1989, vol. 171, pp. 465–472.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Yurgel, S.N., Sharypova, L.A., Syrtsova, L.A., et al., Respiratory activity and symbiotic effectiveness in the nodule bacterium Rhizobium meliloti, Mikrobiologiya, 1996, vol. 65, no. 4, pp. 517–521.Google Scholar
  30. 30.
    Yurgel, S.N., Sharypova, L.A., and Simarov, B.V., Mutations Tn5 of Rhizobium meliloti enhancing the redox potential of free-living cells and the effectiveness of their symbiosis with alfalfa, Russ. J. Genet., 1998, vol. 34, no. 6, pp. 601–605.Google Scholar
  31. 31.
    Chizhevskaya, E.P., Krol’, E.A., Onishchuk, O.P., et al., Physical and genetic mapping of mutations for symbiotic effectiveness on megaplasmid-2 of the Rhizobium meliloti strain CXM1, Russ. J. Genet., 1998, vol. 34, no. 9, pp. 1027–1033.Google Scholar
  32. 32.
    Krol, E.A., Soberon, M., Yurgel, S.N., et al., Sinorhizobium meliloti megaplasmid 2 oligopeptide transport system permease protein (oppC) gene, partial cds; and RedA (redA) and putative glycosyltransferase (redB) genes, complete cds. gi|4929436|gb| AF148072.1|AF148072[4929436]. AF148072.Google Scholar
  33. 33.
    Yurgel, S.N., Soberon, M., Sharypova, L.A., et al., Isolation of Sinorhizobium meliloti Tn5 mutants with altered cytochrome terminal oxidase expression and improved symbiotic performance, FEMS Microbiol. Lett., 1998, vol. 165, pp. 167–173.PubMedCrossRefGoogle Scholar
  34. 34.
    Peralta, H., Mora, Y., Salazar, E., et al., Engineering the nifH promoter region and abolishing poly-betahydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris, Appl. Environ. Microbiol., 2004, vol. 70, pp. 3272–3281.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Peoples, O.P. and Sinskey, A.J., Polyhydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: identification and characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase, J. Biol. Chem., 1989, vol. 264, pp. 15293–15297.PubMedGoogle Scholar
  36. 36.
    Marroqui, S., Zorreguieta, A., Santamaria, C., et al., Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants, J. Bacteriol., 2001, vol. 183, pp. 854–864.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Provorov, N.A., Simarov, B.V., and Fedorov, S.N., Symbiotic properties of various types of mutants of nodule bacteria, Izv. Akad. Nauk SSSR, Ser. Biol., 1985, no. 6, pp. 870–884.Google Scholar
  38. 38.
    Simarov, B.V., Aronshtam, A.A., Novikova, N.I., et al., Geneticheskie osnovy selektsii kluben’kovykh bakterii (Genetic Basis for the Nodule Bacteria Selection), Leningrad: Agropromizdat, 1990.Google Scholar
  39. 39.
    Maier, R. and Brill, W.J., Mutant strains of Rhizobium japonicum with increased ability to fix nitrogen for soybean, Science, 1978, vol. 201, pp. 448–450.PubMedCrossRefGoogle Scholar
  40. 40.
    Hungria, M., Neves, M.C.P., and Döbereiner, J., Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic HUP mutants of Bradyrhizobium japonicum, Biol. Fertil. Soil, 1989, vol. 7, pp. 325–329.Google Scholar
  41. 41.
    Chen, H., Richardson, A.E., Gartner, E., et al., Construction of an acid-tolerant Rhizobium leguminosarum bv. trifolii strain with enhanced capacity of nitrogen fixation, Appl. Environ. Microbiol., 1991, vol. 57, pp. 2005–2011.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Spaink, H.P., Okker, R.J., Wijffelman, C.A., et al., Symbiotic properties of rhizobia containing a flavonoid-independent hybrid nodD product, J. Bacteriol., 1989, vol. 171, pp. 4045–4053.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Shlaman, Kh., Fillips, D., and Kondoroshi, E., Genetic organization and transcriptional regulation of rhizobia genes controlling nodulation, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 389–416.Google Scholar
  44. 44.
    Kaminski, P., Batut, Zh., and Boistard, P., Control of symbiotic nitrogen fixation by rhizobia, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 465–492.Google Scholar
  45. 45.
    Vens, S., Symbiotic nitrogen fixation in legumes: agronomic aspects, in Rhizobiaceae: molekulyarnaya biologiya bakterii, vzaimodeistvuyushchikh s rasteniyami (Rhizobiaceae: Molecular Biology of Bacteria Interacting with Plants), Spaink, G., Kondoroshi, A., and Khukas, P., Eds., St. Petersburg: Biont, 2002, pp. 541–564.Google Scholar
  46. 46.
    Matiru, V.N. and Dakora, F.D., Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals, New Phytol., 2005, vol. 165, pp. 847–855.PubMedCrossRefGoogle Scholar
  47. 47.
    Novak, K., On the efficiency of legume supernodulating mutants, Ann. Appl. Biol., 2010, vol. 157, pp. 321–342.CrossRefGoogle Scholar
  48. 48.
    Provorov, N.A., Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models, Russ. J. Plant Physiol., 2013, vol. 60, no. 1, pp. 27–32.CrossRefGoogle Scholar
  49. 49.
    Provorov, N.A., Shtark, O.Y., Zhukov, V.A., et al., Developmental Genetics of Plant-Microbe Symbioses, New York: NOVA, 2010.Google Scholar
  50. 50.
    Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., et al., Intimate associations of beneficial soil microbes with host plants, in Soil Microbiology and Sustainable Crop Production, Dixon, R. and Tilston, E., Eds., Berlin: Springer-Verlag, 2010, pp. 119–196.CrossRefGoogle Scholar
  51. 51.
    Lie, T.A., Göktan, D., Engin, M., et al., Co-evolution of the legume-Rhizobium association, Plant Soil, 1987, vol. 100, pp. 171–181.CrossRefGoogle Scholar
  52. 52.
    Provorov, N.A., Zhukov, V.A., Kurchak, O.N., et al., Comigration of root nodule bacteria and bean plants to new habitats: coevolution mechanisms and practical importance, Appl. Biochem. Microbiol., 2013, vol. 49, no. 3, pp. 209–214.CrossRefGoogle Scholar
  53. 53.
    Onishchuk, O.P. and Simarov, B.V., Genes controlling nodulation competitiveness of nodule bacteria, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1157–1166.Google Scholar
  54. 54.
    Capela, D., Barloy-Hubler, F., and Gouzy, J., Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 17, pp. 9877–9882.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Barnett, M.J., Fisher, R.F., Jones, T., et al., Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 9883–9888.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Finan, T.M., Weidner, S., Chain, P., et al., The complete sequence of the 1,683 kilobase pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 9889–9894.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    García-Rodríguez, F.M. and Toro, N., Sinorhizobium meliloti nfe (nodule formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation, Mol. Plant-Microbe Interact., 2000, vol. 13, pp. 583–591.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • N. A. Provorov
    • 1
    • 4
  • O. P. Onishchuk
    • 1
  • S. N. Yurgel
    • 2
  • O. N. Kurchak
    • 1
  • E. P. Chizhevskaya
    • 1
  • N. I. Vorobyov
    • 1
  • T. V. Zatovskaya
    • 3
  • B. V. Simarov
    • 1
  1. 1.All-Russia Research Institute of Agricultural MicrobiologySt. PetersburgRussia
  2. 2.Institute of Biological ChemistryWashington State UniversityPullmanUSA
  3. 3.Zabolotny Institute of Microbiology and VirologyUkranian National Academy of SciencesKievUkraine
  4. 4.International Research Centre Biotechnologies of the Third MillenniumSaint-PetersburgRussia

Personalised recommendations