Advertisement

Russian Journal of Genetics

, Volume 50, Issue 7, pp 763–768 | Cite as

Modeling the dynamics of the effective population size of the Okhotsk Sea pollock in the Holocene era on the basis of genetic variability in the Nd2 and Cytb mtDNA loci

  • V. V. Gorbachev
  • A. G. Lapinskiy
  • O. V. Prikoki
  • L. L. Solovenchuk
Animal Genetics

Abstract

We used Bayesian statistics to investigate the demographic history of the walleye pollock in the sea of Okhotks based on polymorphisms of sequences of the Nd2 and Cytb mitochondrial genes. We determined the average age for the Most Recent Common Ancestor (MRCA) as 44.1 ± 2 and 52.6 ± 1.3 thousand years, respectively, for Nd2 and Cytb. These findings suggest that demographic expansion of the Okhotsk Sea pollock began 10–12 thousand years ago, which coincides with the period of global changes in the sea level during the Late Pleistocene-Early Holocene eras.

Keywords

Effective Population Size Ocean Level Walleye Pollock Most Recent Common Ancestor Single Nucleotide Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, Mass.: Harvard Univ. Press, 2000.Google Scholar
  2. 2.
    Grant, W.S., Spies, I., and Canino, M.F., Shifting-balance stock structure in North Pacific walleye pollock (Gadus chalcogrammus), ICES J. Mar. Sci., 2010, vol. 67, pp. 1687–1696.CrossRefGoogle Scholar
  3. 3.
    Bosin, A.A., Reconstruction of primary production of the Sea of Okhotsk in the Late Pleistocene and Holocene inferred from chlorine method data, Cand. Sci. (Geogr.) Dissertation, Moscow: Passific Oceanol. Inst., Far Eastern Branch of Russ. Acad. Sci., 2009.Google Scholar
  4. 4.
    Avise, J.C., Molecular Markers, Natural History, and Evolution, Sunderland: Sinauer, 2004, 2nd ed.Google Scholar
  5. 5.
    Carr, S.M. and Marshall, H.D., Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity, Mitochondrial DNA, 2008, vol. 19, no. 6, pp. 490–496.PubMedCrossRefGoogle Scholar
  6. 6.
    Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G., Bayesian coalescent inference of past population dynamics from molecular sequences, Mol. Biol. Evol., 2005, no. 22, no. 5, pp. 1185–1192.Google Scholar
  7. 7.
    Canino, M.F., Spies, I.B., Cunningham, K.M., et al., Multiple ice-age refugia in pacific cod Gadus chalcogrammus, Mol. Ecol., 2010, vol. 19, pp. 4339–4351.CrossRefGoogle Scholar
  8. 8.
    Liu, J.-X., Tatarenkov, A., Beacham, T.D., et al., Effects of Pleistocene climatic fluctuations on the phylogeographic and demographic histories of Pacific herring (Clupea pallasii), Mol. Ecol., 2011, vol. 20, pp. 3879–3893.PubMedCrossRefGoogle Scholar
  9. 9.
    Atarhouch, T., Ruber, L., Gonzalez, E.G., et al., Signature of an early genetic bottleneck in a population of Moroccan sardines (Sardina pilchardus), Mol. Phylogenet. Evol., 2006, vol. 39, no. 2, pp. 373–383.PubMedCrossRefGoogle Scholar
  10. 10.
    Carr, S.M. and Marshall, H.D., Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the “Codmother” transatlantic vicariance and midglacial population expansion, Genetics, 2008, vol. 180, pp. 381–389.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Bulatov, O.A. and Sobolevskii, E.I., Distribution stock state and prospects for walleye pollock fisheries in the Bering Sea open waters, Biol. Morya, 1990, no. 5, pp. 65–72.Google Scholar
  12. 12.
    Mel’nikov, I.V., Smirnov, A.V., and Baitalyuk, A.A., Modern principles of resources and pollock fisheries management in Russia, Vopr. Rybolov., 2011, vol. 12, no. 2(46), pp. 210–223.Google Scholar
  13. 13.
    Kuznetsov, V.V., Kotenev, B.N., and Kuznetsova, E.N., Population structure of walleye pollock Theragra chalcogramma stock in the northern Okhotsk Sea and problems of its fishery utilization, Vopr. Rybolov., 2008, vol. 9, no. 1(33), pp. 110–127.Google Scholar
  14. 14.
    Shubina, E.A., Ponomoreva, E.V., and Glubokov, A.I., Population genetic structure of walleye pollock Theragra chalcogramma (Gadidae, Pisces) from the Bering Sea and Sea of Okhotsk, Mol. Biol. (Moscow), 2009, vol. 43, no. 5, pp. 855–866.CrossRefGoogle Scholar
  15. 15.
    Grant, W.S., Spies, I.B., and Canino, M.F., Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye pollock Theragra chalcogramma, J. Hered., 2006, vol. 97, no. 6, pp. 571–580.PubMedCrossRefGoogle Scholar
  16. 16.
    Buslov, A.V., New data on distribution and migrations of walleye pollock in the Pacific waters adjacent to the north Kuril Islands and southeast Kamchatka, Izv. Tikhookean. Inst. Rybov. Okeanogr., 2001, vol. 128, pp. 229–241.Google Scholar
  17. 17.
    Brykov, V.A., Polyakova, N.E., Priima, T.F., and Katugin, O.N., Mitochondrial DNA variation in northwestern Bering Sea walleye pollock, Theragra chalcogramma (Pallas), Environ. Biol. Fishes, 2004, vol. 69, pp. 167–175.CrossRefGoogle Scholar
  18. 18.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.Google Scholar
  19. 19.
    Coulson, M.V., Marshall, H.D., Pepin, P., and Carr, S.M., Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets, Genome, 2006, vol. 49, pp. 1115–1130.PubMedCrossRefGoogle Scholar
  20. 20.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.PubMedCrossRefGoogle Scholar
  21. 21.
    Drummond, A.J. and Rambaut, A., BEAST: Bayesian evolutionary analysis by sampling trees, BMC Evol. Biol., 2007, vol. 7, no. 214. doi:10.1186/147-2148-7-214.Google Scholar
  22. 22.
    Ho, S., Saarma, U., Barnett, R., et al., The effect of inappropriate calibration: three case studies in molecular ecology, PLoS One, 2008, vol. 3, no. 2, p. e1615.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Pavlinov, I.Ya., Vvedenie v sovremennuyu filogenetiku (kladogeneticheskii aspekt) (Introduction to Contemporary Phylogenetics (a Cladogenetic Aspect)), Moscow: KMK, 2005.Google Scholar
  24. 24.
    Solovenchuk, L.L., Belyi, M.N., Gorbachev, V.V., and Lapinskii, A.G., Genetic diversity of cod Gadus macrocephalus in the Asian part of the North Pacific, Chteniya pamyati akademika K.V. Simakova (Readings in Memory of Academician K.V. Simakov), (Proc. All-Russ. Sci. Conf.), Magadan, 2013, pp. 172–173.Google Scholar
  25. 25.
    Tajima, F., The effect of change in population size on DNA polymorphism, Genetics, 1989, vol. 123, pp. 597–601.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Shuntov, V.P., Status of pelagic nekton communities of the Far Eastern seas, Zh. Rybn. Khoz., 1996, no. 1, pp. 35–37.Google Scholar
  27. 27.
    Solovenchuk, L.L., Lapinskii, A.G., and Gorbachev, V.V., Informativeness of different mtDNA fragments as molecular markers in population genetics of the Pacific herring (Clupea pallasii), Vestn. Sev.-Vost. Gos. Univ., 2012, no. 18, pp. 53–55.Google Scholar
  28. 28.
    Wakeley, J., Coalescent Theory: An Introduction, Colorado: Roberts, 2008.Google Scholar
  29. 29.
    Gorbachev, V.V., Application of mathematical modeling to assess the impact of changes in population genetic diversity of aquatic organisms, in Chteniya pamyati V.Ya. Levanidova (Readings in Memory of V.Ya. Levanidov), Vladivostok: Dal’nauka, 2011, issue 5, pp. 114–118.Google Scholar
  30. 30.
    Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.CrossRefGoogle Scholar
  31. 31.
    Waelbroeck, C., Labeyrie, L., Michel, E., et al., Sealevel and deep water temperature changes derived from benthic foraminifera isotopic records, Quat. Sci. Rev., 2002, vol. 21, nos. 1–3, pp. 295–305.CrossRefGoogle Scholar
  32. 32.
    Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period: biogeograficheskie obosnovaniya gipotezy (Large Fluctuations in Sea Level during the Quaternary Period: Biogeographic Substantiation of the Hypothesis), Leningrad: Nauka, 1972.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • V. V. Gorbachev
    • 1
  • A. G. Lapinskiy
    • 1
  • O. V. Prikoki
    • 2
  • L. L. Solovenchuk
    • 1
  1. 1.Institute of Biological Problems of the North, Far Eastern BranchRussian Academy of SciencesMagadanRussia
  2. 2.Magadan Research Institute of Fisheries and OceanographyMagadanRussia

Personalised recommendations