Russian Journal of Genetics

, Volume 50, Issue 6, pp 569–576 | Cite as

Expression of the Drosophila melanogaster limk1 gene 3′-UTRs mRNA in yeast Saccharomyces cerevisiae

  • A. M. Rumyantsev
  • G. A. Zakharov
  • A. V. Zhuravlev
  • M. V. Padkina
  • E. V. Savvateeva-Popova
  • E. V. Sambuk
Genetics of Microorganisms


The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3′-untranscribed regions (3′-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3′-UTRs’ and RNA-binding proteins’ interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limk1 mRNA 3′-UTRs revealed the potential sites of yeast transcriptional termination. Computer modeling demonstrated the possibility of secondary structure formation in limk1 mRNA 3′-UTRs. For an evaluation of the functional activity of Drosophila 3′-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3′-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limk1 Gene 3′-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3′-UTR’s role in post-transcriptional regulation.


Acid Phosphatase Minimal Free Energy PHO5 Gene Transcription Termination Site Cofilin Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bamburg, J.R. and Bloom, G.S., Cytoskeletal pathologies of Alzheimer disease, Cell Motil. Cytoskeleton, 2009, vol. 66, no. 8, pp. 635–649.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Yang, C., Huang, M., Debiasio, J., et al., Profilin enhances Cdc42-induced nucleation of actin polymerization, J. Cell Biol., 2000, vol. 150, no. 5, pp. 1001–1012.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mori, T., Okano, I., Mizuno, K., et al., Comparison of tissue distribution of two novel serine/threonine kinase genes containing the LIM motif (LIMK-1 and LIMK-2) in the developing rat, Brain Res. Mol. Brain Res., 1997, vol. 45, no. 2, pp. 247–254.PubMedCrossRefGoogle Scholar
  4. 4.
    Meng, Y., Zhang, Y., Tregoubov, V., et al., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice, Neuron, 2002, vol. 35, no. 1, pp. 121–133.PubMedCrossRefGoogle Scholar
  5. 5.
    Lim, M.K., Kawamura, T., Ohsawa, Y., et al., Parkin interacts with LIM kinase 1 and reduces its cofilinphosphorylation activity via ubiquitination, Exp. Cell Res., 2007, vol. 313, no. 13, pp. 2858–2874.PubMedCrossRefGoogle Scholar
  6. 6.
    Savvateeva, E.V. and Kamyshev, N.G., Effect of Drosophila melanogaster mutations involving cyclic adenosine-3′,5’-monophosphate metabolism on motor activity and learning, Dokl. Akad. Nauk SSSR, 1978, vol. 243, pp. 1564–1567.PubMedGoogle Scholar
  7. 7.
    Savvateeva, E.V. and Kamyshev, N.G., Behavioral effects of temperature sensitive mutations affecting metabolism of cAMP in Drosophila melanogaster, Pharmacol. Biochem. Behav., 1981, vol. 14, no. 5, pp. 603–611.PubMedCrossRefGoogle Scholar
  8. 8.
    Edelmann, L., Spiteri, E., Koren, K., et al., AT-Rich palindromes mediate the constitutional t(11;22) translocation, Am. J. Hum. Genet., 2001, vol. 68, no. 1, pp. 1–13.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Ceman, S. and Saugstad, J., MicroRNAs: meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease, Pharmacol. Ther., 2011, vol. 130, no. 1, pp. 26–37.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sumi, T., Hashigasako, A., Matsumoto, K., and Nakamura, T., Different activity regulation and subcellular localization of LIMK1 and LIMK2 during cell cycle transition, Exp. Cell Res., 2006, vol. 312, no. 7, pp. 1021–1030.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilkie, G.S., Dickson, K.S., and Gray, N.K., Regulation of mRNA translation by 5′- and 3′-UTR-binding factors, Trends Biochem. Sci., 2003, vol. 28, no. 4, pp. 182–188.PubMedCrossRefGoogle Scholar
  12. 12.
    Hilgers, V., Perry, M.W., Hendrix, D., et al., Neural-specific elongation of 3′ UTRs during Drosophila development, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 38, pp. 15864–15869.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Mendez, R. and Richter, J.D., Translational control by CPEB: a means to the end, Nat. Rev. Mol. Cell Biol., 2001, vol. 2, pp. 521–529.PubMedCrossRefGoogle Scholar
  14. 14.
    Guthrie, C. and Fink, G.R., Guide to Yeast Genetics and Molecular Biology, Academic, 1991, vol. 194.Google Scholar
  15. 15.
    Samsonova, M.G., Padkina, M.V., and Krasnopevtseva, N.G., Genetical and biochemical studies of acid phosphatases of Saccharomyces cerevisiae: 5. Genetic control of regulation of acid phosphatase II synthesis, Genetika (Moscow), 1975, vol. 11, pp. 104–115.Google Scholar
  16. 16.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.Google Scholar
  17. 17.
    Sambrook, J. and Russel, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab. Press, 2001, 3rd ed.Google Scholar
  18. 18.
    Glover, D.M., Gene Cloning-The Mechanics of DNA-Manipulation, London: Chapman & Hall, 1984.Google Scholar
  19. 19.
    Padkina, M.V., Krasnopevtseva, N.G., Petrashen’, M.G., et al., Genetical and biochemical studies of acid phosphatases of Saccharomyces cerevisiae: 1. Characterization of acid phosphatases from different strains, Genetika (Moscow), 1974, vol. 10, pp. 100–111.Google Scholar
  20. 20.
    Gruber, A.R., Lorenz, R., Bernhart, S.H., et al., The Vienna RNA website, Nucleic Acids Res., 2008, vol. 36. doi: 10.1093/nar/gkn188Google Scholar
  21. 21.
    Zuker, M. and Stiegler, P., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Res., 1981, vol. 9, no. 1, pp. 133–148.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    McCaskill, J.S., The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, 1990, vol. 29, nos. 6–7, pp. 1105–1119.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao, J., Hyman, L., and Moore, C., Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis, Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 2, pp. 405–445.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Ozsolak, F., Kapranov, P., Foissac, S., et al., Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation, Cell, 2010, vol. 43, no. 6, pp. 1018–1029.CrossRefGoogle Scholar
  25. 25.
    Kuehner, J.N., Pearson, E.L., and Moore, C., Unraveling the means to an end: RNA polymerase II transcription termination, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 5, pp. 283–294.PubMedCrossRefGoogle Scholar
  26. 26.
    Plass, M., Codony-Servat, C., Ferreira, P.G., et al., RNA secondary structure mediates alternative 3′ss selection in Saccharomyces cerevisiae, RNA, 2012, vol. 18, no. 6, pp. 1103–1115.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mercer, T.R., Wilhelm, D., Dinger, M.E., et al., Expression of distinct RNAs from 3′ untranslated regions, Nucleic Acids Res., 2012, vol. 40, no. 18, pp. 8862–8873.CrossRefGoogle Scholar
  28. 28.
    Wickens, M., Bernstein, D.S., Kimble, J., and Parker, R., A PUF family portrait: 3′UTR regulation as a way of life, Trends Genet., 2002, vol. 18, no. 3, pp. 150–157.PubMedCrossRefGoogle Scholar
  29. 29.
    Chan, S., Choi, E.A., and Shi, Y., Pre-mRNA 3′-end processing complex assembly and function, Wiley Interdiscip. Rev. RNA, 2011, vol. 2, no. 3, pp. 321–335.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vessey, J.P., Schoderboeck, L., Gingl, E., et al., Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 7, pp. 3222–3227.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • A. M. Rumyantsev
    • 1
  • G. A. Zakharov
    • 1
    • 2
  • A. V. Zhuravlev
    • 2
  • M. V. Padkina
    • 1
  • E. V. Savvateeva-Popova
    • 1
    • 2
  • E. V. Sambuk
    • 1
  1. 1.Department of Genetics and BiotechnologySaint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations