Russian Journal of Genetics

, Volume 50, Issue 4, pp 406–414 | Cite as

Linkage disequilibrium analysis for microsatellite loci in six cattle breeds

  • T. Yu. Kiselyova
  • J. Kantanen
  • N. I. Vorobyov
  • B. E. Podoba
  • V. P. Terletsky
Animal Genetics

Abstract

Autosomal microsatellites are valuable tools for investigating genetic diversity and population structure and making conservation decisions to preserve valuable breeds of domestic animals. We carried out a linkage disequilibrium analysis using 29 microsatellite markers in six cattle populations: Suksun, Istoben, Yaroslavl, Kholmogory, Grey Ukrainian and Pechora type of Khologory cattle. We discovered a significant linkage disequilibrium between microsatellites INRA037 and CSRM60 in Grey Ukrainian cattle.

Keywords

Quantitative Trait Locus Linkage Disequilibrium Microsatellite Locus Cattle Breed Cattle Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lander, E.S. and Botstein, D., Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 1989, vol. 121, no. 1, pp. 185–190.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Lander, E. and Kruglyak, L., Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results, Nat. Genet., 1995, vol. 11, no. 3, pp. 241–247.PubMedCrossRefGoogle Scholar
  3. 3.
    Georges, M., Nielsen, D., Mackinon, M., et al., Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing, Genetics, 1995, vol. 139, no. 2, pp. 907–920.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Weller, J.I., Introduction to QTL detection and marker-assisted selection, in Biotechnology’s Role in the Genetic Improvement of Farm Animals (Proc. Symp. Agric. Res. 20), Savoy, IL: American Society of Animal Science, 1996, pp. 259–275.Google Scholar
  5. 5.
    Hayes, B.J., Moen, T., and Goddard, M.E., Dissection of complex traits in livestock and aquaculture species, AgBiotechNet, 2005, vol. 7, ABN 136, p. 10.Google Scholar
  6. 6.
    Trifonova, E.A., Linkage disequilibrium of the MTHFR gene in populations of Northern Eurasia and among patients with coronary atherosclerosis, Cand. Sci. (Med.) Dissertation, Tomsk: Research Institute of Medical Genetics, 2009.Google Scholar
  7. 7.
    Patil, N., Berno, A.J., Hinds, D.A., et al., Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21, Science, 2001, vol. 294, no. 5547, pp. 1719–1723.PubMedCrossRefGoogle Scholar
  8. 8.
    Shifman, S., Kuypers, J., Kokoris, M., et al., Linkage disequilibrium patterns of the human genome across populations, Hum. Mol. Genet., 2003, vol. 12, no. 7, pp. 771–776.PubMedCrossRefGoogle Scholar
  9. 9.
    Rana, N.A., Ebenezer, N.D., Webster, A.R., et al., Recombination hotspots and block structure of linkage disequilibrium in the human genome exemplified by detailed analysis of PGM1 on lp31, Hum. Mol. Genet., 2004, vol. 13, no. 24, pp. 3089–3102.PubMedCrossRefGoogle Scholar
  10. 10.
    Linkage Disequilibrium and Association Mapping: Analysis and Applications, Collins, A.R., Ed., vol. 376 of Methods in Molecular Biology, Totowa, NJ: Humana, 2007.Google Scholar
  11. 11.
    Akul’chenko, Yu.S., Elaboration and application of the genome-wide genetic association analysis of complex traits, Doctoral (Biol.) Dissertation, Novosibirsk: Institute of Cytology and Genetics, 2010.Google Scholar
  12. 12.
    Aksenovich, T.I., Mapping of genes, determining human disease distribution, Med. Genet., 2006, no. 2, pp. 11–15.Google Scholar
  13. 13.
    Tenesa, A., Knott, S.A., Ward, D., et al., Estimation of linkage disequilibrium in a sample of the United Kingdom dairy cattle population using unphased genotypes, J. Anim. Sci., 2003, vol. 81, no. 3, pp. 617–623.PubMedGoogle Scholar
  14. 14.
    Bolormaa, S., Hayes, B.J., Savin, K., et al., Genomewide association studies for feedlot and growth traits in cattle, J. Anim. Sci., 2011, vol. 89, no. 6, pp. 1–37.CrossRefGoogle Scholar
  15. 15.
    Khatkar, M.S., Thomson, P.C., Tammen, I., et al., Linkage disequilibrium on chromosome 6 in Australian Holstein-Friesian cattle, Genet. Sel. Evol., 2006, vol. 38, no. 5, pp. 463–477.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Du, F.-X., Clutter, A.C., and Lohuis, M.M., Characterizing linkage disequilibrium in pig population, Int. J. Biol. Sci., 2007, vol. 3, no. 3, pp. 166–178.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Bozkaya, F. and Kurar, E., Linkage disequilibrium between MHC-linked microsatellite loci in white karaman, awassi and merinolandschaf sheep breeds, Fyrat Univ. Saglik Bilimlery Dergisi, 2005, vol. 19, no. 1, pp. 57–61.Google Scholar
  18. 18.
    Andreescu, C., Avendano, S., Brown, S., et al., Linkage disequilibrium in related breeding lines of chickens, Genetics, 2007, vol. 177, no. 4, pp. 2161–2169.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Chernyshova, A., Identification of genetic markers, linked with susceptibility to diabetes mellitus type 1, on chromosomes 1, 2, 5 and 16, Cand. Sci. (Biol.) Dissertation, Moscow: State Research Institute of Genetics and Breeding of Industrial Microorganisms, 2007.Google Scholar
  20. 20.
    Bulmer, M.G., The effect of selection on genetic variability, Am. Nat., 1971, vol. 105, no. 943, pp. 201–211.CrossRefGoogle Scholar
  21. 21.
    Sved, J., Linkage disequilibrium and homozygosity of chromosome segments in finite populations, Theor. Popul. Biol., 2001, vol. 2, no. 2, pp. 125–141.CrossRefGoogle Scholar
  22. 22.
    Farnir, F., Coppieters, W., Arranz, J., et al., Extensive genome-wide linkage disequilibrium in cattle, Genome Res., 2000, vol. 10, no. 2, pp. 220–227.PubMedCrossRefGoogle Scholar
  23. 23.
    Bishop, M.D., Kappes, S.M., Keele, J.W., et al., A genetic linkage map for cattle, Genetics, 1994, vol. 136, no. 2, pp. 619–639.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Toldo, S.S., Fries, R., Steffen, P., et al., Physically mapped, cosmid-derived microsatellite markers as anchor loci on bovine chromosomes, Mamm. Genome, 1993, vol. 4, no. 12, pp. 720–727.PubMedCrossRefGoogle Scholar
  25. 25.
    Steffen, P., Eggen, A., Dietz, A.B., et al., Isolation and mapping of polymorphic microsatellites in cattle, Anim. Genet., 1993, vol. 24, no. 2, pp. 121–124.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaukinen, J. and Varvio, S.L., Eight polymorphic bovine microsatellites, Anim. Genet., 1993, vol. 24, no. 2, p. 148.Google Scholar
  27. 27.
    Brezinsky, L.S., Kemp, J., and Teale, A.J., ILSTS005: a polymorphic bovine microsatellite, Anim. Genet., 1993a, vol. 24, no. 1, p. 73.Google Scholar
  28. 28.
    Vaiman, D., Mercier, D.L., Moazami-Goudarzi, K., et al., A set of 99 cattle microsatellites: characterisation, synteny mapping, and polymorphism, Mamm. Genome, 1994, vol. 5, no. 5, p. 288–297.PubMedCrossRefGoogle Scholar
  29. 29.
    Vaiman, D., Osta, R., Mercier, D., et al., Characterization of five new bovine microsatellite repeats, Anim. Genet., 1992, vol. 23, no. 6, pp. 537–541.PubMedCrossRefGoogle Scholar
  30. 30.
    Barendse, W., Armitage, S.M., Kossarek, L.M., et al., A genetic linkage map of the bovine genome, Nat. Genet., 1994, vol. 6, no. 3, pp. 227–235.PubMedCrossRefGoogle Scholar
  31. 31.
    Brezinsky, L.S., Kemp, J., and Teale, A.J., ILSTS006: a polymorphic bovine microsatellite, Anim. Genet., 1993b, vol. 24, no. 1, p. 73.Google Scholar
  32. 32.
    Georges, M. and Massey, J.M., Polymorphic DNA markers in Bovidae, Patent WO 92/13102, 1992.Google Scholar
  33. 33.
    Thieven, U., Solinos-Toldo, S., Friedl, R., et al., Polymorphic CA-microsatellites for the integration of the bovine genetic and physical map, Mamm. Genome, 1997, vol. 8, no. 1, pp. 52–55.PubMedCrossRefGoogle Scholar
  34. 34.
    Moore, S.S. and Byrne, K., Characterisation of 65 bovine microsatellites, Mamm. Genome, 1994, vol. 5, no. 2, pp. 84–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Mommens, G.W., Coppieters, A., van de Weghe, A., et al., Dinucleotide repeat polymorphism at the bovine MM12E6 and MM8D3 loci, Anim. Genet., 1994, vol. 25, no. 5, p. 368.PubMedCrossRefGoogle Scholar
  36. 36.
    Moore, S.S. and Byrne, K., Dinucleotide polymorphism at the bovine calmodulin independent adenylcyclase locus, Anim. Genet., 1993, vol. 24, no. 2, p. 150.Google Scholar
  37. 37.
    Ivanov, P.L, Zemskova, E.Yu., Turakulov, R., and Efremov, I.A., Study of potentially linked variants of the chromosomal DNA polymorphism in relation to forensic application of molecular-genetic individualizing systems CD4, vWA, and WFII, Sud.-Med. Ekspert., 2005, no. 2, pp. 29–34.Google Scholar
  38. 38.
    McKay, S.D., Schnabel, R.D., Murdoch, B.M., et al., Whole genome linkage disequilibrium maps in cattle, BMC Genet., 2007, vol. 8, no. 74, pp. 1–12.Google Scholar
  39. 39.
    Kiseleva, T.Yu., Podoba, B.E., Zabludovskii, E.E., et al., Analysis of 30 microsatellite markers in six cattle populations, S-kh. Biol., 2010, no. 6, pp. 20–25.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • T. Yu. Kiselyova
    • 1
  • J. Kantanen
    • 2
  • N. I. Vorobyov
    • 3
  • B. E. Podoba
    • 4
  • V. P. Terletsky
    • 1
  1. 1.All-Russia Research Institute for Farm Animal Genetics and BreedingSaint Petersburg, PushkinRussia
  2. 2.Biotechnology and Food ResearchMTT Agrifood Research Institute, FinlandJokioinenFinland
  3. 3.All-Russia Research Institute for Agricultural MicrobiologySaint-Petersburg, PushkinRussia
  4. 4.Institute of Animal Breeding and Genetics of the National Academy of Agrarian Sciences of UkraineChubinskoeUkraine

Personalised recommendations