Russian Journal of Genetics

, Volume 49, Issue 11, pp 1155–1167 | Cite as

Single-nucleotide polymorphism in populations of sockeye salmon Oncorhynchus nerka from Kamchatka Peninsula

  • A. M. Khrustaleva
  • O. F. Gritsenko
  • N. V. Klovach
Animal Genetics


The genetic variability of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchus nerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differential approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, owing to this fact the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within and among the regions of the origin of Kamchatka sockeye salmon were selected.


Sockeye Salmon Kamchatka Peninsula Population Assignment Spined Stickleback TaqMan Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altukhov, Yu.P., Salmenkova, E.A., Konovalov, S.M., and Pudovkin, A.I., Stationary distribution of frequencies of lactatedehydrogenase and phosphoglucomutase in subpopulations of local fish stocks (by example of Oncorhynchus nerka Walb.) Report I. Stability of the stock in generations at simultaneous variation of subpopulations that constitute their structure, Genetika (Moscow), 1975, vol. 11, no. 4, pp. 44–62.Google Scholar
  2. 2.
    Kirpichnikov, V.S. and Muske, G.A., Population genetics of Kamchatka sockeye salmon Oncorhynchus nerka Walb., in Genetika i razmnozhenie morskikh zhivotnykh (Genetics and Reproduction of Sea Animals), Vladivostok, 1981, pp. 59–71.Google Scholar
  3. 3.
    Varnavskaya, N.V., Varnavskii, V.S., Vetsler, I.I., and Nepomnyashchii, K.Yu., The specificity of spatial genetic differentiation of sockeye salmon (Oncorhynchus nerka Walbaum) populations of the Nachikinskoe, Dvukhyurtochnoe, Dal’nee and Blizhnee Lakes (Kamchatka), Genetika (Moscow), 1988, vol. 24, no. 4, pp. 723–731.Google Scholar
  4. 4.
    Pustovoit, S.P., Genogeographic study of sockeye salmon Oncorhynchus nerka (Walbaum), Russ. J. Genet., 1995, vol. 31, no. 2, pp. 239–244.Google Scholar
  5. 5.
    Varnavskaya, N.V., Wood, C.C., and Everett, R., Genetic variation in sockeye salmon (Oncorhynchus nerka) populations of Asia and North America, Can. J. Fish. Aquat. Sci., 1994, vol. 51, suppl. 1, pp. 132–146.CrossRefGoogle Scholar
  6. 6.
    Varnavskaya, N.V., Geneticheskaya differentsiatsiya populyatsii tikhookeanskikh lososei (Genetic Differentiation of Pacific Salmon Populations), Petropavlovsk-Kamchatskii: KamchatNIRO, 2006.Google Scholar
  7. 7.
    Khrustaleva, A.M. and Zelenina, D.A., Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems, Russ. J. Genet., 2008, vol. 44, no. 7, pp. 826–832.CrossRefGoogle Scholar
  8. 8.
    Khrustaleva, A.M., Volkov, A.A., Stoklitskaia, D.S., et al., Comparative analysis of STR and SNP polymorphism in the populations of sockeye salmon (Oncorhynchus nerka) from Eastern and Western Kamchatka, Russ. J. Genet., 2010, vol. 46, no. 11, pp. 1362–1372.CrossRefGoogle Scholar
  9. 9.
    Beacham, T.D., Varnavskaya, N.V., McIntosh, B., and MacConnachie, C., Population structure of sockeye salmon from Russia determined with microsatellite DNA variation, Trans. Am. Fish. Soc., 2006, vol. 135, pp. 97–109.CrossRefGoogle Scholar
  10. 10.
    Beacham, T.D., McIntosh, B., MacCconnachie, C., et al., Pacific Rim population structure of sockeye salmon as determined from microsatellite analysis, Trans. Am. Fish. Soc., 2006, vol. 135, pp. 174–187.CrossRefGoogle Scholar
  11. 11.
    Zelenina, D.A., Khrustaleva, A.M. and Volkov, A.A., Comparative study of the population structure and population assignment of sockeye salmon Oncorhynchus nerka from west Kamchatka based on RAPDPCR and microsatellite polymorphism, Russ. J. Genet., 2006, vol. 42, no. 5, pp. 563–572.CrossRefGoogle Scholar
  12. 12.
    Corley-Smith, G.E., Wennerberg, L., Schembri, J.A., et al., Assignment of sockeye salmon (Oncorhynchus nerka) to spawning sites using DNA markers, Mar. Biotechnol., 2005, vol. 7, no. 5, pp. 440–448.PubMedCrossRefGoogle Scholar
  13. 13.
    Brykov, V.A., Poliakova, N.E., Podlesnykh, A.V., et al., The effect of reproduction biotopes on the genetic differentiation of populations of sockeye salmon Oncorhynchus nerka, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 509–517.CrossRefGoogle Scholar
  14. 14.
    Bickham, J.W., Wood, C.C., and Patton, J.C., Biogeographic implications of cytochrome b sequences and allozymes in sockeye (Oncorhynchus nerka), J. Hered., 1995, vol. 86, pp. 140–144.PubMedGoogle Scholar
  15. 15.
    Landegren, U., Nilsson, M., and Kwok, P.Y., Reading bits of genetic information: methods for single-nucleotide polymorphism analysis, Genome Res., 1998, vol. 8, pp. 769–776.PubMedGoogle Scholar
  16. 16.
    Brookes, A., The essence of SNP, Gene, 1999, vol. 234, pp. 177–186.PubMedCrossRefGoogle Scholar
  17. 17.
    Morin, P.A., Luikart, G., Wayne, R.K., et al., SNPs in ecology, evolution and conversation, Trends Ecol. Evol., 2004, vol. 19, no. 4, pp. 208–216.CrossRefGoogle Scholar
  18. 18.
    Altukhov, Yu.P. and Salmenkova, E.A., DNA polymorphism in population genetics, Russ. J. Genet., 2002, vol. 38, no. 9, pp. 989–1008.CrossRefGoogle Scholar
  19. 19.
    Seeb, J.E., Wilmot, R.L., Urawa, S., et al., Single nucleotide polymorphisms (SNPs) provide standard DNA data for Bering-Aleutian salmon international survey (BASIS) studies, NPAFC Tech. Rep., 2005, no. 6, pp. 101–103.Google Scholar
  20. 20.
    Zelenina, D.A., Khrustaleva, A.M., Volkov, A.A., et al., A case study of two genetic markers for inter-laboratory collaboration: SNPs provide transportability without standardization, NPAFC Doc., 2005, no. 913, p. 14.Google Scholar
  21. 21.
    Smith, C.T., Elfstrom, C.M., Seeb, J.E., and Seeb, L.W., Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon, Mol. Ecol., 2005, vol. 14, pp. 4193–4203.PubMedCrossRefGoogle Scholar
  22. 22.
    Elfstrom, C.M., Smith, C.T., and Seeb, J.E., Thirty-two single nucleotide polymorphism markers for high-throughput genotyping of sockeye salmon, Mol. Ecol. Notes, 2006, vol. 6, no. 4, pp. 1255–1259.CrossRefGoogle Scholar
  23. 23.
    Habicht, C., Seeb, L.W., Myers, K.W., et al., Summerfall distribution of stocks of immature sockeye salmon in the Bering Sea as revealed by single-nucleotide polymorphisms, Trans. Am. Fish. Soc., 2010, vol. 139, no. 4, pp. 1171–1191.CrossRefGoogle Scholar
  24. 24.
    Gritsenko, O.F., Klovach, N.V., Zelenina, D.A., et al., Population content of immature sockeye salmon in the western Bering Sea during autumn, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 2007, vol. 151, pp. 206–213.Google Scholar
  25. 25.
    Khrustaleva, A.M., Variability of size-age indices and genetic variability of sockeye salmon Oncorhynchus nerka from the Western Coast of Kamchatka: comparative analysis of methods of differentiation of local populations, Vopr. Ikhtiol., 2010, vol. 50, no. 3, pp. 305–317.Google Scholar
  26. 26.
    Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.Google Scholar
  27. 27.
    Kofiadi, I.A. and Rebrikov, D.V., Methods for detecting single nucleotide polymorphisms: allele-specific PCR and hybridization with oligonucleotide probe, Russ. J. Genet., 2006, vol. 42, no. 1, pp. 16–26.CrossRefGoogle Scholar
  28. 28.
    Seeb, J.E., Pascal, C.E., Ramakrishnan, R., and Seeb, L.W., SNP genotyping by the 5′-nuclease reaction: advances in high throughput genotyping with non-model organisms, in Methods in Molecular Biology, Single Nucleotide Polymorphisms, Komar, A., Ed., New York: Humana, 2009, 2nd ed., pp. 277–292.CrossRefGoogle Scholar
  29. 29.
    Dieringer, D. and Schlotterer, C., Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets, Mol. Ecol. Notes, 2002, vol. 3, no. 1, pp. 167–169.CrossRefGoogle Scholar
  30. 30.
    Raymond, M. and Rousset, F., GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, vol. 86, pp. 248–249.Google Scholar
  31. 31.
    Excoffier, L., Laval, G., and Schneider, S., Arlequin ver. 3.0: an integrated software package for population genetics data analysis, Evol. Bioinform. Online, 2005, vol. 1, pp. 47–50.Google Scholar
  32. 32.
    Ackerman, M.W., Habicht, C., and Seeb, L.W., Singlenucleotide polymorphisms (SNPs) under diversifying selection provide increased accuracy and precision in mixed-stock analyses of sockeye salmon from the Copper River, Alaska, Trans. Am. Fish. Soc., 2011, vol. 140, no. 3, pp. 865–881.CrossRefGoogle Scholar
  33. 33.
    Creelman, E.K., Hauser, L., Simmons, R.K., et al., Temporal and geographic genetic divergence: characterizing sockeye salmon populations in the Chignik Watershed, Alaska, using single-nucleotide polymorphisms, Trans. Am. Fish. Soc., 2011, vol. 140, no. 3, pp. 749–762.CrossRefGoogle Scholar
  34. 34.
    Gomez-Uchida, D., Seeb, J.E., Smith, M.J., et al., Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon populations, BMC Evol. Biol., 2011, vol. 11, p. 48. PubMedCrossRefGoogle Scholar
  35. 35.
    McGlauflin, M.T., Schindler, D., Habicht, C., et al., Influences of spawning habitat and geography: population structure and juvenile migration timing of sockeye salmon in the Wood River lakes, Alaska, Trans. Am. Fish. Soc., 2011, vol. 140, no. 3, pp. 763–782.CrossRefGoogle Scholar
  36. 36.
    Nielsen, R., Estimation of population parameters and recombination rates from single nucleotide polymorphisms, Genetics, 2000, vol. 154, no. 2, pp. 931–942.PubMedGoogle Scholar
  37. 37.
    Belfiore, N.M., Discovering and using linked and unlinked SNPs for population genetic inference, in SNP Workshop II: Applications of SNP Genotyping in Fisheries Management, Girdwood, 2006, pp. 13–14.Google Scholar
  38. 38.
    Bugaev, V.F., Aziatskaya nerka (presnovodnyi period zhizni, struktura lokal’nykh stad, dinamika chislennosti) (Asian Sockeye Salmon (Freshwater Period of Life, Local Stock Structure, and Population Number Dynamics)), Moscow: Kolos, 1995.Google Scholar
  39. 39.
    Miller, K.M., Kaukinen, K.H., Beacham, T.D., and Withler, R.E., Geographic heterogeneity in natural selection on an MHC locus in sockeye salmon, Genetics, 2001, vol. 111, nos. 1–3, pp. 237–257.Google Scholar
  40. 40.
    Grimholt, U., Larsen, S., Nordmo, R., et al., MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci, Immunogenetics, 2003, vol. 55, no. 4, pp. 210–219.PubMedCrossRefGoogle Scholar
  41. 41.
    Dionne, M., Miller, K.M., Dodson, J.J., et al., Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon, Evolution, 2007, vol. 61, no. 9, pp. 2154–2164.PubMedCrossRefGoogle Scholar
  42. 42.
    Dionne, M., Miller, K.M., Dodson, J.J., et al., MHC standing genetic variation and pathogen resistance in wild Atlantic salmon, Philos. Trans. R. Soc., B, 2009, vol. 364, no. 1523, pp. 1555–1565.CrossRefGoogle Scholar
  43. 43.
    Evans, M.L. and Neff, B.D., Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha), Mol. Ecol., 2009, vol. 18, no. 22, pp. 4716–4729.PubMedCrossRefGoogle Scholar
  44. 44.
    Gordeeva, N.V., High estimates of differentiation between pink salmon, Oncorhynchus gorbuscha, populations at locus of major histocompatibility complex MHC-I A1 supporting the “local stock” hypothesis, Vopr. Ikhtiol., 2012, vol. 52, no. 1, pp. 72–81.Google Scholar
  45. 45.
    Hughes, A.L. and Yeager, M., Natural selection at major histocompatibility complex loci of vertebrates, Ann. Rev. Genet., 1998, vol. 32, pp. 415–435.PubMedCrossRefGoogle Scholar
  46. 46.
    Hedrick, P.W., Pathogen resistance and genetic variation at MHC loci, Evolution, 2002, vol. 56, no. 10, pp. 1902–1908.PubMedGoogle Scholar
  47. 47.
    Bernatchez, L. and Landry, C., MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years?, J. Evol. Biol., 2003, vol. 16, pp. 363–377.PubMedCrossRefGoogle Scholar
  48. 48.
    Sommer, S., The importance of immune gene variability (MHC) in evolutionary ecology and conservation, Front. Zool., 2005, vol. 2, no. 16, pp. 1–18.CrossRefGoogle Scholar
  49. 49.
    Reusch, T.B. and Langefors, A., Interand intralocus recombination drive MHC class IIB gene diversification in a teleost, the three-spined stickleback Gasterosteus aculeatus, J. Mol. Evol., 2005, vol. 61, no. 4, pp. 531–541.PubMedCrossRefGoogle Scholar
  50. 50.
    McVean, G.A., Myers, S.R., Hunt, S., et al., The finescale structure of recombination rate variation in the human genome, Science, 2004, vol. 304, no. 5670, pp. 581–584.PubMedCrossRefGoogle Scholar
  51. 51.
    Schaschl, H., Suchentrunk, F., Hammer, S., and Goodman, S.J., Recombination and the origin of sequence diversity in the DRB MHC class II locus in chamois (Rupicapra spp.), Immunogenetics, 2005, vol. 57, nos. 1-2, pp. 108–115.PubMedCrossRefGoogle Scholar
  52. 52.
    Reusch, T.B., Schaschl, H., and Wegner, K.M., Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the threespined stickleback, Immunogenetics, 2004, vol. 56, pp. 427–437.PubMedCrossRefGoogle Scholar
  53. 53.
    Clark, A.G., Hubisz, M.J., Bustamante, C.D., et al., Ascertainment bias in studies of human genome-wide polymorphism, Genome Res., 2005, vol. 15, no. 11, pp. 1496–1502.PubMedCrossRefGoogle Scholar
  54. 54.
    Helyar, S.J., Hemmer-Hansen, J., Bekkevold, D., et al., Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges, Mol. Ecol. Resour., 2011, vol. 11, suppl. 1, pp. 123–136.PubMedCrossRefGoogle Scholar
  55. 55.
    Rosenberg, N.A., Li, L.M., Ward, R., and Pritchard, J.K., Informativeness of genetic markers for inference of ancestry, Am. J. Hum. Genet., 2003, vol. 73, pp. 1402–1422.PubMedCrossRefGoogle Scholar
  56. 56.
    Brumfield, R.T., Beerli, P., Nickerson, D.A., et al., The utility of single nucleotide polymorphisms in inferences of population history, Trends Ecol. Evol., 2003, vol. 18, no. 5, pp. 249–256.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • A. M. Khrustaleva
    • 1
  • O. F. Gritsenko
    • 1
  • N. V. Klovach
    • 1
  1. 1.Russian Federal Research Institute of Fisheries and OceanographyMoscowRussia

Personalised recommendations