Advertisement

Russian Journal of Genetics

, Volume 49, Issue 10, pp 1021–1029 | Cite as

Genetic variation in six species of the genus Oxytropis DC. (Fabaceae) from Kamchatka Peninsula

  • A. B. Kholina
  • O. V. Nakonechnaya
  • V. V. Yakubov
  • O. G. Koren
Plant Genetics

Abstract

Using the isozyme analysis, genetic variations in six species of the genus Oxytropis DC. (Fabaceae) from Kamchatka was assessed. It was demonstrated that diploid species from the section Arctobia were characterized by a low level of variations typical of endemic plant species. At the same time, polyploid species from the Orobia section demonstrated very high values of the heterozygosity parameters (H o varied from 0.200 to 0.274). It has been suggested that the level of polymorphism of the oxytropes from Kamchatka was shaped as a result of the interaction of a number of factors, among which the most important are the ecological confinedness of the species, the specific features of the reproductive system, and gene drift. In the species of Orobia section, it is also the presence of the polyploid genome.

Keywords

Internal Transcribe Spacer Polyploid Species Kamchatka Peninsula Shrub Tundra Mountain Tundra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Man’ko, Yu.I. and Sidel’nikov, A.N., Vliyanie vulkanizma na rastitel’nost’ (The Influence of Volcanism upon the Vegetation), Vladivostok: Dal’nevost. Otd. Akad. Nauk SSSR, 1989.Google Scholar
  2. 2.
    Voronkova, N.M., Kholina, A.B., and Verkholat, V.P., Plant biomorphology and seed germination in pioneer species of Kamchatka volcanoes, Biol. Bull., 2008, vol. 35, no. 6, pp. 599–605.CrossRefGoogle Scholar
  3. 3.
    Dolezal, J., Homma, K., Vyatkina, M.P., et al., Primary succession following deglaciation at Koryto glacier valley, Kamchatka, Arct. Antarct. Alp. Res., 2008, vol. 40, no. 2, pp. 309–322.CrossRefGoogle Scholar
  4. 4.
    Voronkova, N.M., Verkholat, V.P., and Kholina, A.B., Specific features of plants at early stages of the colonization of loose volcanic matter, Biol. Bull., 2011, vol. 38, no. 3, pp. 237–241.CrossRefGoogle Scholar
  5. 5.
    Yakubov, V.V. and Chernyagina, O.A., Katalog flory Kamchatki (sosudistye rasteniya) (Catalog of Flora of Kamchatka (Vascular Plants)), Petropavlovsk-Kamchatskii: Kamchatpress, 2004.Google Scholar
  6. 6.
    Yurtsev, B.A., Oxytropis DC., in Arkticheskaya flora SSSR (Arctic Flora of the Soviet Union), Yurtsev, B.A., Ed., Leningrad: Nauka, 1986, no. 9, part 2, pp. 61–146.Google Scholar
  7. 7.
    Pavlova, N.S., Legumes—Fabaceae, in Sosudistye rasteniya sovetskogo Dal’nego Vostoka (Vascular Plants of the Soviet Far East), Kharkevich, S.S., Ed., Leningrad: Nauka, 1989, vol. 4, pp. 191–339.Google Scholar
  8. 8.
    Vlasova, N.V., Dyukhina, E.I., and Trubina, L.K., Patterns of geographical distribution of the section Arctobia genus Oxytropis (Fabaceae), in Rastitel’nyi mir Aziatskoi Rossii (Vegetation World of Asiatic Russia), 2008, no. 1, pp. 10–16.Google Scholar
  9. 9.
    Yakubov, V.V., Endemic species of flora of Kamchatka, in Sokhranenie bioraznoobraziya Kamchatki i prilegayushchikh morei (Conservation of Biodiversity of Kamchatka and Adjacent Seas), (Proc. 5th Sci. Conf.), Tokranov., A.M., Ed., Petropavlovsk-Kamchatskii, 2004, pp. 112–115.Google Scholar
  10. 10.
    Krasnaya kniga Yakutskoi ASSR: Redkie i nakhodyashchiesya pod ugrozoi ischeznoveniya vidy rastenii (Red Book of Yakut ASSR: Rare and Endangered Plant Species), Novosibirsk: Nauka, 1987.Google Scholar
  11. 11.
    Kholina, A.B., Koren, O.G., and Zhuravlev, Yu.N., Allozyme variation in Oxytropis retusa Matsum. from the Kuril Archipelago, Nat. Hist. Res. Chiba. Spec. Issue, 2000, no. 7, pp. 15–20.Google Scholar
  12. 12.
    Kholina, A.B., Koren, O.G., and Zhuravlev, Yu.N., Genetic structure and differentiation of populations of the tetraploid species Oxytropis chankaensis (Fabaceae), Russ. J. Genet., 2009, vol. 45, no. 1, pp. 70–80.CrossRefGoogle Scholar
  13. 13.
    Artyukova, E.V., Kozyrenko, M.M., Kholina, A.B., and Zhuravlev, Yu.N., High chloroplast haplotype diversity in the endemic legume Oxytropis chankaensis may result from independent polyploidization events, Genetics, 2011, vol. 139, no. 2, pp. 221–232.Google Scholar
  14. 14.
    Kholina, A.B. and Nakonechnaya, O.V., Allozyme polymorphism in six Oxytropis species from Siberia and the Far East, in Sovremennye issledovaniya v biologii (Modern Research in Biology), (Proc. 1st All-Russian Conf.), Vladivostok, 2012, pp. 281–285.Google Scholar
  15. 15.
    Probatova, N.S., Rudyka, E.G., Seledets, V.P., and Nechaev, V.A., Oxytropis kamtschatica, Oxytropis ochotensis, Oxytropis revoluta in IAPT/IOPB Chromosome Data 6, Marhold, K., Ed., Taxon, 2008, vol. 57, no. 4, p. 1270.Google Scholar
  16. 16.
    Probatova, N.S., Seledets, V.P., Gnutikov, A.A., and Shatokhina, A.V., Oxytropis erecta, Oxytropis exserta, in IAPT/IOPB Chromosome Data 6, Marhold, K., Ed., Taxon, 2008, vol. 57, no. 4, p. 1272.Google Scholar
  17. 17.
    Probatova, N.S., Kazanovsky, S.G., Rudyka, E.G., et al., Oxytropis evenorum, in IAPT/IOPB Chromosome Data 6, Marhold, K., Ed., Taxon, 2011, vol. 60,no. 6, p. 1792.Google Scholar
  18. 18.
    Goncharenko, G.G., Padutov, V.E., and Potenko, V.V., Rukovodstvo po issledovaniyu khvoinykh vidov metodom elektroforeticheskogo analiza izofermentov (Guide to Conifer Species Research by Isozyme Electrophoretic Methods), Gomel’: Polespechat’, 1989.Google Scholar
  19. 19.
    Zhivotovskii, L.A., Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991.Google Scholar
  20. 20.
    Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, no. 949, pp. 283–292.CrossRefGoogle Scholar
  21. 21.
    Ota, T., DISPAN: Genetic Distance and Phylogenetic Analysis, Pennsylvania State Univ., 1993. http://www.bio.psu.edu/People/Faculty/Nei/Lab/dis-pan2.htm Google Scholar
  22. 22.
    Hamrick, J.L. and Godt, M.J.W., Effects of life history traits on genetic diversity in plant species, Phil. Trans. R. Soc. Lond. B, 1996, vol. 351, pp. 1291–1298.CrossRefGoogle Scholar
  23. 23.
    Dinamika populyatsionnykh genofondov pri antropogennykh vozdeistviyakh (Dynamics of Population Gene Pools under Anthropogenic Impact), Altukhov, Yu.P., Ed., Moscow: Nauka, 2004.Google Scholar
  24. 24.
    Soltis, P.S. and Soltis, D.E., The role of genetic and genomic attributes in the success of polyploids, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 7051–7057.PubMedCrossRefGoogle Scholar
  25. 25.
    Lopez-Pijol, J., Bosch, M., Simon, J., and Blanche, S., Allozyme diversity in the tetraploid endemic Thymus loscosii (Lamiaceae), Ann. Bot., 2004, vol. 93, pp. 323–332.CrossRefGoogle Scholar
  26. 26.
    Vucetich, J.A. and Waite, T.A., Spatial patterns of demography and genetic processes across the species’ range: Null hypotheses for landscape conservation genetics, Conserv. Genet., 2003, vol. 4, pp. 639–645.CrossRefGoogle Scholar
  27. 27.
    Shurkhal, A.V., Podogas, A.V., and Zhivotovskii, L.A., Levels of genetic differentiation in the hard pines, subgenus Pinus, genus Pinus, from data on allozyme variation, Genetika (Moscow), 1993, vol. 29, no. 1, pp. 77–90.Google Scholar
  28. 28.
    Jorgensen, J.L., Stehlik, I., Brochmann, C., and Conti, E., Implication of its sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complexes in Alaska, Am. J. Bot., 2003, vol. 90, no. 10, pp. 1470–1480.PubMedCrossRefGoogle Scholar
  29. 29.
    Chung, M., Gelembiuk, G., and Givnish, T.J., Population genetics and phylogeography of endangered Oxytropis campestris var. chartacea and relatives: Arcticalpine disjuncts in eastern North America, Mol. Ecol., 2004, vol. 13, pp. 3657–3673.PubMedCrossRefGoogle Scholar
  30. 30.
    Schonswetter, P., Tribsch, A., and Niklfeld, H., Amplified fragment length polymorphism (AFLP) reveal no genetic divergence of the Eastern Alpine endemic Oxytropis campestris subsp. tirolensis (Fabaceae) from wide-spread subsp. campestris, Plant Syst. Evol., 2004, vol. 244, pp. 245–255.CrossRefGoogle Scholar
  31. 31.
    Archambault, A. and Stromvik, M.V., Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic, Botany, 2012, vol. 90, no. 8, pp. 770–779.CrossRefGoogle Scholar
  32. 32.
    Artyukova, E.V. and Kozyrenko, M.M., Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 186–193.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • A. B. Kholina
    • 1
  • O. V. Nakonechnaya
    • 1
  • V. V. Yakubov
    • 1
  • O. G. Koren
    • 1
  1. 1.Institute of Biology and Soil ScienceFar Eastern Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations