Advertisement

Russian Journal of Genetics

, Volume 49, Issue 7, pp 722–729 | Cite as

Peculiarities of phosphoglycerate kinase-1 pseudogene evolution in Schrenck salamander (Salamandrella schrenckii Strauch 1870)

  • B. A. Malyarchuk
  • G. A. Denisova
  • M. V. Derenko
Animal Genetics

Abstract

Processed copies of genes generally evolve in neutral mode as pseudogenes, however, some of them might be important sources of new functional genes. The ψPGK1 pseudogene has been discovered in Schrenck salamander (Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae) via polymerase chain reaction used to amplify the phosphoglycerate kinase 1 gene (PGK1). This pseudogene is an intronless copy of PGK1 gene absent of exon 6. Analysis of ψPGK1 pseudogene polymorphism has demonstrated that it lacks mutations, which results in shifts in the stop codons and reading frames, as well as that the interspecies variation of this pseudogene was inconsistent with the neutral model of evolution. In addition, the pattern of phylogeographic differentiation of the ψPGK1 variants mainly coincides with that observed in mitochondrial DNA. These observations allow it to be suggested that the ψPGK1 pseudogene is a new functional gene in the Schrenck salamander.

Keywords

Neutral Model Phosphoglycerate Kinase Wood Frog Phosphoglycerate Mutase Pseudo Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, S., Storey, J.M., and Storey, K.B., Phosphoglycerate kinase 1 expression responds to freezing, anoxia, and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica, J. Exp. Zool., 2009, vol. 311A, pp. 57–67.CrossRefGoogle Scholar
  2. 2.
    Firth, J.D., Ebert, B.L., Pugh, C.W., and Ratcliffe, P.J., Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 30 enhancer, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 6496–6500.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu, Y.-J., Zheng, D., Balasubramanian, S., et al., Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: The anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity, BMC Genomics, 2009, vol. 10, p. 480.PubMedCrossRefGoogle Scholar
  4. 4.
    Balakirev, E.S. and Aiyala, F.J., Psevdogenes: Conservation of structure, expression and function, Zh. Obshch. Biol., 2004, vol. 65, no. 4, pp. 306–321.PubMedGoogle Scholar
  5. 5.
    Tam, O.H., Aravin, A.A., Stein, P., et al., Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes, Nature, 2008, vol. 453, pp. 534–538.PubMedCrossRefGoogle Scholar
  6. 6.
    Malyarchuk, B.A., Berman, D.I., and Derenko, M.V., Centers of genetic diversity and origin of newts of the genus Salamandrella (Salamandrella keyserlingii and Salamandrella schrenckii, Amphibia, Caudata, Hynobiidae), Dokl. Akad. Nauk, 2010, vol. 435, no. 1–6, pp. 448–452.Google Scholar
  7. 7.
    Berman, D.I., Derenko, M.V., Malyarchuk, B.A., et al., Intraspecific genetic differentiation in Siberian newt (Salamandrella keyserlingii, Amphibia, Caudata) and the cryptic species S. schrenskii from southeastern Russia, Zool. Zh., 2005, vol. 84, no. 11, pp. 1374–1388.Google Scholar
  8. 8.
    Rozen, S. and Skaletsky, H.J., Primer3 on the www for general users and for biologist programmers, Bioinformatics Methods and Protocols: Methods in Molecular Biology, Krawetz, S. and Misener, S., Eds., Totowa, NJ: Humana, 2000, pp. 365–386.Google Scholar
  9. 9.
    Tamura, K., Peterson, D., Peterson, N., et al., Mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.PubMedCrossRefGoogle Scholar
  10. 10.
    Librado, P. and Rozas, J., DnaSP v5: A software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451–1452.PubMedCrossRefGoogle Scholar
  11. 11.
    Nielsen, R. and Yang, Z., Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene, Genetics, 1998, vol. 148, pp. 929–936.PubMedGoogle Scholar
  12. 12.
    McDonald, J.H. and Kreitman, M., Adaptive protein evolution at the Adh locus in Drosophila, Nature, 1991, vol. 351, pp. 652–654.PubMedCrossRefGoogle Scholar
  13. 13.
    Jukes, T.H. and Cantor, C.R., Evolution of protein molecules, Mammalian Protein Metabolism, Munro, H.N., Ed., New York: Academic, 1969, pp. 121–132.Google Scholar
  14. 14.
    Michelson, A.M., Blake, C.C.F., Evans, S.T., and Orkin, S.H., Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 6965–6969.PubMedCrossRefGoogle Scholar
  15. 15.
    Malyarchuk, B.A., Derenko, M.V., Berman, D.I., et al., Genetic structure of Schrenck newt Salamandrella schrenckii populations by mitochondrial cytochrome b variation, Mol. Biol. (Moscow), 2009, vol. 43, no. 1, pp. 47–54.CrossRefGoogle Scholar
  16. 16.
    Svensson, O., Arvestad, L., and Lagergren, J., Genome-wide survey for biologically functional pseudogenes, PLoS Comput. Biol., 2006, vol. 2, p. e46PubMedCrossRefGoogle Scholar
  17. 17.
    Jeffares, D.C., Penkett, C.J., and Bahler, J., Rapidly regulated genes are intron poor, Trends Genet., 2008, vol. 24, pp. 375–378.PubMedCrossRefGoogle Scholar
  18. 18.
    Long, M. and Langley, C.H., Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila, Science, 1993, vol. 260, pp. 91–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Hirotsune, S., Yoshida, N., Chen, A., et al., An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene, Nature, 2003, vol. 423, pp. 91–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Betrán, E., Wang, W., Jin, L., and Long, M., Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene, Mol. Biol. Evol., 2002, vol. 19, pp. 654–663.PubMedCrossRefGoogle Scholar
  21. 21.
    Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.CrossRefGoogle Scholar
  22. 22.
    McCarrey, J.R., Nucleotide sequence of the promoter region of a tissue-specific human retroposon: Comparison with its housekeeping progenitor, Gene, 1987, vol. 61, pp. 291–298.PubMedCrossRefGoogle Scholar
  23. 23.
    Maestre, J., Tchenio, T., Dhellin, O., and Heidmann, T., mRNA retroposition in human cells: Processed pseudogene formation, EMBO J., 1995, vol. 14, pp. 6333–6338.PubMedGoogle Scholar
  24. 24.
    Dierick, H.A., Mercer, J.F.B., and Glover, T.W., A phosphoglycerate mutase brain isoform (PGAM1) pseudogene is localized within the human Menkes disease gene (ATP7A), Gene, 1997, vol. 198, pp. 37–41.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • B. A. Malyarchuk
    • 1
  • G. A. Denisova
    • 1
  • M. V. Derenko
    • 1
  1. 1.Institute of the Biological Problems of the NorthFar East Branch of Russian Academy of SciencesMagadanRussia

Personalised recommendations