Advertisement

Russian Journal of Genetics

, Volume 48, Issue 5, pp 497–505 | Cite as

Recent progress of salinity tolerance research in plants

  • S. Yu
  • W. Wang
  • B. Wang
Reviews and Theoretical Articles

Abstract

This paper reviews the most recent research progress in the field of salt tolerance for plants such as Arabidopsis, tomato, wheat, rice and cotton. Salinity tolerance is defined and classified, and research advances in the physiology, cellular biology and molecular biology of salt tolerance are presented. Additionally, transgenic breeding advances are profiled and the studies on quantitative trait locus are given; finally, an outlook for future salinity resistance research is proposed.

Keywords

Quantitative Trait Locus Salt Stress Salt Tolerance Salinity Tolerance Salt Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, S.W. and Tanag, Z.C., Plants Physiology and Molecular Biology, Beijing: Science Press, 1998.Google Scholar
  2. 2.
    Zhu, J.K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 2, no. 6, pp. 66–71.CrossRefGoogle Scholar
  3. 3.
    Cuartero, J., Bolarin, M.C., Asins, M.J., and Moreno, V., Increasing Salt Tolerance in Tomato, J. Exp. Bot., 2006, vol. 57, pp. 1045–1058.PubMedCrossRefGoogle Scholar
  4. 4.
    Pan, R., Wang, X.J., and Li, N.H., Plant Physiology, Beijing: Higher Education Press, 2008.Google Scholar
  5. 5.
    Katerji, N., Hoorn, J.W., Hamdy, A., and Mastrorilli, M., Salinity Effect on Crop Development and Yield, Analysis of Salt Tolerance According to Several Classification Methods, Agric. Water Manage., 2003, vol. 62, pp. 37–66.CrossRefGoogle Scholar
  6. 6.
    Chen, J.M., Research Advance in the Tolerance of Plant to Salt, Jiangsu, J. Agric. Sci., 2006, vol. 34, no. 14, pp. 248–254.Google Scholar
  7. 7.
    Jiang, Y., Lü, Y.J., and Zhu, S.J., Advance in Studies of the Mechanism of Salt Tolerance and Controlling of Salt Damage in Upland Cotton, Cott. Sci., 2006, vol. 18, no. 4, pp. 248–254.Google Scholar
  8. 8.
    Wang, W., Pan, Z.J., and Pan, Q.B., Studying Progress in Salt-Tolerant Characters of Crops, Acta Agric. Jiangxi, 2009, vol. 21, no. 2, pp. 30–33.Google Scholar
  9. 9.
    James, R.A., Munns, R., von Caemmere, S., et al., Photosynthetic Capacity is Related to the Cellular and Subcellular Partitioning of Na+, K+, and Cl in Salt-Affected Barley and Durum Wheat, Plant Cell Environ., 2006, vol. 29, pp. 2185–2197.PubMedCrossRefGoogle Scholar
  10. 10.
    Müller, I.S., Gilliham, M., Jha, D., and Mayo, G.M., Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type-Specific Alteration of Na+ Transport in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 2163–2178.CrossRefGoogle Scholar
  11. 11.
    Tûrkana, I. and Demiral, T., Recent Developments in Understanding Salinity Tolerance, Environ. Exp. Bot., 2009, vol. 67, no. 1, pp. 2–9.CrossRefGoogle Scholar
  12. 12.
    Hoekstra, F.A., Golovina, E.A., and Buitink, J., Mechanisms of Plant Desiccation Tolerance, Trends Plant Sci., 2001, vol. 6, pp. 431–443.PubMedCrossRefGoogle Scholar
  13. 13.
    Sun, J.C. and Wang, X.C., Studies in Genetic Engineering on Salt Resistance in Rice, J. Ningxia Agric. For. Sci. Technol., 2007, vol. 4, pp. 40–42.Google Scholar
  14. 14.
    Turchetto-Zolet, A.C., Margis-Pinheiro, M., and Margis, R., The Evolution of Pyrroline-5-Carboxylate Synthase in Plants: A Key Enzyme in Proline Synthesis, Mol. Genet. Genomics, 2009, vol. 281, pp. 87–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu, F.H., Guo, Y., Gu, D.M., et al., Salt Tolerance of Transgenic Plants with BADH cDNA, Acta Gene Sin., 1997, vol. 27, no. 2, pp. 151–155.Google Scholar
  16. 16.
    Valentina, M., Theodoulou, F.L., Guy, K., et al., Coordinate Induction of Glutathione Biosynthesis and Glutathione Metabolizing Enzymes is Correlated with Salt Tolerance in Tomato, FEBS Lett., 2003, vol. 554, pp. 417–421.CrossRefGoogle Scholar
  17. 17.
    Salekdeh, G.H., Siopongco, J., Wade, L.J., et al., A Proteomic Approach to Analyzing Drought- and Salt-Responsiveness in Rice, Field Crops Res., 2002, vol. 76, pp. 199–219.CrossRefGoogle Scholar
  18. 18.
    Achard, P., Cheng, H., Grauwe, L.D., et al., Integration of Plant Responses to Environmentally Activated Phytohormonal Signals, Science, 2006, vol. 311, pp. 91–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, H., Liang, X., Wanm, Q., et al., Ethylene and Nitric Oxide Are Involved in Maintaining Ion Homeostasis in Arabidopsis Callus under Salt Stress, Planta, 2009, vol. 230, pp. 293–307.PubMedCrossRefGoogle Scholar
  20. 20.
    Yang, L., Zu, Y.G., and Tang, Z.H., Ethylene Improves Arabidopsis Salt Tolerance Mainly via Retaining K+ in Shoots and Roots rather than Decreasing Tissue Na+ Content, Environ. Exp. Bot., 2010, doi:10.1016/j.envexpbot.2010.08.006.Google Scholar
  21. 21.
    Xin, C.S., Dong, H.Z., Tang, W., and Wen, S.M., Physiological and Molecular Mechanisms of Salt Injury and Salt Tolerance in Cotton, Acta Gossypii Sin., 2005, vol. 17, no. 5, pp. 309–313.Google Scholar
  22. 22.
    Lin, H.X., Yanagihara, S., Zhuang, J.Y., et al., Identification of QTL for Salt Tolerance in Rice via Molecular Markers, Chin. J. Rice Sci., 1998, vol. 12, no. 2, pp. 72–78.Google Scholar
  23. 23.
    Lin, H.X., Zhu, M.Z., Yano, M., et al., QTLs for Na+ and K+ Uptake of the Shoots and Roots Controlling Rice Salt Tolerance, Theor. Appl. Genet., 2004, vol. 108, pp. 253–260.PubMedCrossRefGoogle Scholar
  24. 24.
    Gao, J.P. and Lin, H.X., A Significant Progress of Salt Resistance in Rice—the Salt Resistant QTL SKC1, Chin. Bull. Life Sci., 2005, vol. 17, no. 6, pp. 563–565.Google Scholar
  25. 25.
    Wang, B., Lan, T., and Wu, W.R., Mapping of QTLs for Na+ Content in Rice Seedlings under Salt Stress, Chin. J. Rice Sci., 2007, vol. 21, no. 6, pp. 585–590.Google Scholar
  26. 26.
    Yao, M.Z., Wang, J.F., Chen, H.Y., et al., Inheritance and QTL Mapping of Salt Tolerance in Rice, Rice Sci., 2005, vol. 12, no. 1, pp. 25–32.Google Scholar
  27. 27.
    Wu, Y.R., Yi, K.K., and Zhu, J.M., Selection for Salt Tolerance of Tomato Population on the Analysis of Phenotype Parameter, J. Zhejiang Univ. Agric. Life Sci., 1999, vol. 25, no. 6, pp. 645–649.Google Scholar
  28. 28.
    Gao, X.L. and Xiao, Q.M., The NO3-N Contents of Causing Physiological Barriers of Tomato in Sunlight Greenhouse, Liaoning Agric. Sci., 1997, vol. 1, pp. 8–13.Google Scholar
  29. 29.
    Foolad, M.R., Recent Advances in Genetics of Salt Tolerance in Tomato, Plant Cell, Tissue Organ Cult., 2004, vol. 76, no. 2, pp. 101–119.CrossRefGoogle Scholar
  30. 30.
    Dadshani, S.A.W., Weidner, A., Buck-Sorlin, G.H., et al., QTL Analysis for Salt Tolerance in Barley, Deutsoher Tropentag, 2004, pp. 5–7.Google Scholar
  31. 31.
    Zhu, Z.H., Hu, R.H., and Song, J.Z., Effects on the Seedlings of Different Kinds of Wheat with Salt Treatment, J. Nat. Resour., 1996, vol. 4, pp. 25–29.Google Scholar
  32. 32.
    Wu, Y.Q., Liu, L.X., and Guo, H.J., Mapping QTL for Salt Tolerant Traits in Wheat, J. Nucl. Agr. Sci., 2007, vol. 21, no. 6, pp. 545–549.Google Scholar
  33. 33.
    Ren, Z.H., Zheng, Z.M., Chinnusamy, V., et al., RAS1, a Quantitative Trait Locus for Salt Tolerance and ABA Sensitivity in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 12, pp. 5669–5674.PubMedCrossRefGoogle Scholar
  34. 34.
    Luo, Q.Y., Yu, B.J., Liu, Y.L., et al., The Mixed Inheritance Analysis of Salt Resistance in Cultivars of Glycine max, Soybean Sci., 2004, vol. 23, no. 4, pp. 239–244.Google Scholar
  35. 35.
    Shi, H.Z., Ishitani, M., Kim, C., and Zhu, J.K., The Arabidopsis thaliana Salt Tolerance Gene SOS1 Encodes a Putative Na+/H+ Antiporter, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 12, pp. 6896–6901.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu, J.P., Ishitani, M., Halfter, U., et al., The Arabidopsis thaliana SOS2 Gene Encodes a Protein Kinase That Is Required for Salt Tolerance, Proc. Natl. Acad. Sci. U.S.A., 2000 vol. 97, no. 7, pp. 3730–3734.PubMedCrossRefGoogle Scholar
  37. 37.
    Berthomieu, P., Conjro, G., Nublat, A., et al., Functional Analysis of AtHKT1 in Arabidopsis Shows That Na+ Recirculation by the Phloem Is Crucial for Salt Tolerance, EMBO J., 2003, vol. 22, no. 9, pp. 2004–2014.PubMedCrossRefGoogle Scholar
  38. 38.
    Liu, Z.L., Huang, C.L., Zhang, X.H., and Wu, Z.Y., Application of Trehalose and the Study Progress of Trehalose Synthase Gene TPS in Transgenic Plants, Chin. Agric. Sci. Bull., 2009, vol. 25, no. 6, pp. 54–58.Google Scholar
  39. 39.
    Gaxiola, R.A., Li, J.S., Undurraga, S., et al., Drought- and Salt-Tolerant Plants Result from Over-Expression of the AVP1 H+-Pump, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 11444–11449.PubMedCrossRefGoogle Scholar
  40. 40.
    Choi, W., Baek, D., Oh, D.H., et al., NKS1, Na+- and K+-Sensitive 1, Regulates Ion Homeostasis in an SOS — Independent Pathway in Arabidopsis, Phytochemistry, 2011, vol. 72, pp. 330–336.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu, C.F., Zou, J., and Chen, X.B., Advances in DREB Transcription Factors and Plant Abiotic Stress Tolerance, Biotechnol. Bull., 2010, vol. 10, pp. 26–30.Google Scholar
  42. 42.
    Lu, S.Y., Zhao, G.R., Wu, A.M., et al., Molecular Cloning of a Cotton Phosphatase Gene and Its Functional Characterization, Biokhimiya (Moscow), 2010, vol. 75, no. 1, pp. 85–94.CrossRefGoogle Scholar
  43. 43.
    Wu, C.A., Yang, G.D., Meng, Q.W., and Zheng, C.C., The Cotton GhNHX1 Gene Encoding a Novel Putative Tonoplast Na+/H+ Antiporter Plays an Important Role in Salt Stress, Plant Cell Physiol., 2004, vol. 45, no. 5, pp. 600–607.PubMedCrossRefGoogle Scholar
  44. 44.
    Fukuda, A., Nakamura, A., Tagiri, A., et al., Function, Intracellular Localization and the Importance in Salt Tolerance of a Vacuolar Na+/H+ Antiporter from Rice, Plant Cell Physiol., 2004, vol. 45, pp. 146–159.PubMedCrossRefGoogle Scholar
  45. 45.
    Ren, Z.H., Gao, J.P., Li, L.G., et al., A Rice Quantitative Trait Locus for Salt Tolerance Encodes a Sodium Transporter, Nat. Genet., 2005, vol. 37, pp. 1141–1146.PubMedCrossRefGoogle Scholar
  46. 46.
    Motohashi, T., Nagamiya, K.J., Prodhan, S.H., et al., Production of Salt Stress Tolerant Rice by Overexpression of the Catalase Gene, KatE, Derived from Escherichia coli AsPac, J. Mol. Biol. Biotechnol., 2010, vol. 18, no. 1, pp. 37–41.Google Scholar
  47. 47.
    Mukhopadhyay, M., Vij, S., and Tyagi, A.K., Overexpression of a Zinc-Finger Protein Gene from Rice Confers Tolerance to Cold, Dehydration, and Salt Stress in Transgenic Tobacco, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, no. 16, pp. 6309–6314.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhao, F.Y., Guo, S.L., Zhang, H., and Zhao, Y.X., Expression of Yeast SOD2 in Transgenic Rice Results in Increased Salt Tolerance, Plant Sci., 2006, vol. 170, pp. 216–224.CrossRefGoogle Scholar
  49. 49.
    Shi, L., Gan, X.Y., Chen, Y.C., et al., Cloning and Sequence Analysis of Betaine Aldehyde Dehydrogenase Gene from Haloxylon ammodendron, Acta Bot. Bor.-Occid. Sin., 2010, vol. 30, no. 2, pp. 223–228.Google Scholar
  50. 50.
    Wegner, L.H. and Raschke, K., Ion Channels in the Xylem Parenchyma of Barley Roots—a Procedure to Isolate Protoplasts from This Tissue and a Patch-Clamp Exploration of Salt Passageways into Xylem Vessels, Plant Physiol., 1994, vol. 105, pp. 799–813.PubMedGoogle Scholar
  51. 51.
    Wang, J., Zuo, K., and Wu, W., Expression of a Novel Antiporter Gene from Brassica napus Resulted in Enhanced Salt Tolerance in Transgenic Tobacco Plants, Biol. Plantarum, 2004, vol. 48, pp. 509–515.CrossRefGoogle Scholar
  52. 52.
    Zhang, Q.X., Xu, X.F., and Wang, Y., Isolation and Preliminary Function Analysis of a Na+/H+ Antiporter Gene from Malus zumi, Afr. J. Biotechnol., 2009, vol. 8, pp. 4774–4781.Google Scholar
  53. 53.
    Dong, Y.Z., Construction of Vector with IMT1 and Its Gene Expression in Transgenic Tobacco Leaf Cells Associated with Salt Tolerance, Acta Bot. Sin., 1999, vol. 41, no. 2, pp. 146–149.CrossRefGoogle Scholar
  54. 54.
    Zong, Z.W. and Yang, X., Effect of mtlD Expression on Peanut Salt Tolerance, J. Anhui Agric. Sci., 2010, vol. 38, no. 20, pp. 10606–10607.Google Scholar
  55. 55.
    Takahashi, R., Liu, S.K., and Takano, T., Cloning and Functional Comparison of a High-Affinity K+ Transporter Gene Phahkt1 of Salt-Tolerant and Salt-Sensitive Reed Plants, J. Exp. Bot., 2007, vol. 58, nos. 15–16, pp. 4387–4395.PubMedCrossRefGoogle Scholar
  56. 59.
    Yin, Y.L., Liang, J.S., and Liu, Q.Q., Cloning of HAL1 Gene from Saccharomyces cerevisiae and Construction of Its Plant Expression Vector, J. Yangzhou Univ. Agric. Life Sci., 2002, vol. 4, no. 23, pp. 27–29.Google Scholar
  57. 60.
    Shi, H.Z., Lee, B., Wu, S.J., and Zhu, J.K., Over-Expression of a Plasma Membrane Na+/H+ Antiporter Gene Improves Salt Tolerance in Arabidopsis thaliana, Nat. Biotechnol., 2003, vol. 21, pp. 81–85.PubMedCrossRefGoogle Scholar
  58. 56.
    Wang, L.Y., Ding, G.H., and Li, L., Progress in Synthesis and Metabolism of Proline, J. Harbin Normal. Univ. Nat Sci., 2010, vol. 26, no. 2, pp. 84–89.Google Scholar
  59. 57.
    Cai, X.N., Yang, P., Fen, A.L., et al., Cloning of ThHKT1 Gene from Thellungiella halophile, Jiangsu J. Agric. Sci., 2006, vol. 6, pp. 21–24.Google Scholar
  60. 58.
    Duan, X.G., Yang, A.F., Gao, F., et al., Heterologous Expression of Vacuolar H+-PPase Enhances the Electrochemical Gradient Across the Vacuolar Membrane and Improves Tobacco Cell Salt Tolerance, Protoplasma, 2007, vol. 232, pp. 87–95.PubMedCrossRefGoogle Scholar
  61. 59.
    Tang, R., Li, C., and Xu, K., Isolation, Functional Characterization and Expression Pattern of a Vacuolar Na+/H+ Antiporter Gene Trnhx1 from Trifolium repens L., Plant Mol. Biol. Rep., 2010, vol. 28, pp. 102–111.CrossRefGoogle Scholar
  62. 60.
    Li, J.Y., Jiang, G.Q., Huang, P., et al., Over Expression of the Na+/H+ Antiporter Gene from Suaeda salsa Confers Cold and Salt Tolerance to Transgenic Arabidopsis thaliana, Plant Cell Tissue Organ Cult., 2007, vol. 90, pp. 41–48.CrossRefGoogle Scholar
  63. 61.
    Koh, E.J., Song, W.Y., Lee, Y., et al., Expression of Yeast Cadmium Factor 1 (YCF1) Confers Salt Tolerance to Arabidopsis thaliana, Plant Sci., 2006, vol. 170, pp. 534–541.CrossRefGoogle Scholar
  64. 62.
    Sheng, F.F., Yu, Y.J., and Yin, C.Q., Studies on Introducing Salt Resistance DNA of Dogbane into Cotton, Cott. Sci., 1995, vol. 7, no. 1, pp. 18–21.Google Scholar
  65. 63.
    Yu, Y.J., Variation of Characters in Upland Cotton (G. hirsutum) after Introduction by Exogenous DNA from Other Families, J. Shandong Agric. Univ. Nat. Sci., 1991, vol. 22, no. 4, pp. 335–340.Google Scholar
  66. 64.
    Li, N.Y. and Guo, Z.J., Over-Expression of Two Different Transcription Factors, OPBP1 and OsiWRKY, Enhances Resistance against Pathogen Attack and Salt Stress in Rice, Chin. J. Rice Sci., 2006, vol. 20, no. 1, pp. 13–18.Google Scholar
  67. 65.
    Martinez-Rodriguez, M.M., Estan, M.T., Moyano, E., et al., The Effectiveness of Grafting to Improve Salt Tolerance in Tomato When an ‘Excluder’ Genotype is Used as Scion. Environ. Exp. Bot., 2008, vol. 63, pp. 392–401.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.School of Life SciencesNantong UniversityNantongChina
  2. 2.Agricultural Science Institute of Coastal Region of JiangsuYanchengChina

Personalised recommendations