Russian Journal of Genetics

, Volume 48, Issue 8, pp 785–791 | Cite as

A cytogenetic study of the blue-grain line of the common wheat cultivar Saratovskaya 29

  • V. S. Arbuzova
  • E. D. Badaeva
  • T. T. Efremova
  • T. S. Osadchaya
  • N. V. Trubacheeva
  • O. B. Dobrovolskaya
Plant Genetics


The chromosome composition of the blue-grain line i:S29Ba of the cultivar Saratovskaya 29 was identified by cytological, GISH, and microsatellite analyses and C-banding. It was found that common wheat chromosome 4B of the cultivar Saratovskaya 29 was substituted with the Agropyron elongatum Host. chromosome carrying the gene for blue grain (s:S294Ag(4B)) during the construction of this nearly isogenic line. The blue-grain line was tested for productivity. The substitution of total chromosome 4B of the cultivar Saratovskaya 29 by Ag. elongatum chromosome 4 did not significantly affect the spike productivity parameters and grain quality with the exception of spike length (plus effect), spike density, and vitreousness (minus effects). The blue-grain line with s:S294Ag(4B) can be used in further studies associated with chromosome engineering in cereals and wheat breeding.


Common Wheat Substitution Line Isogenic Line Spike Length Alien Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeven, A.C., Wheats with Purple and Blue Grains: A Review, Euphytica, 1991, vol. 56, pp. 243–258.CrossRefGoogle Scholar
  2. 2.
    Kartel’, N.A., Makeeva, N.E., and Mezenko, A.M., Genetika: Entsiklopedicheskii slovar’ (Genetics: Encyclopedic Dictionary), Minsk: Tekhnalogiya, 1999.Google Scholar
  3. 3.
    Zeller, F.J., Cermeno, V.C., and Viller, T.E., Cytological Analysis on the Distribution and Origin of the Alien Chromosome Hair Conferring Blue Aleurone Color in Several European Common Wheat (Triticum aestivum L.) Strains, Theor. Appl. Genet. 1991, vol. 81, pp. 551–558.CrossRefGoogle Scholar
  4. 4.
    Tian, N. and Liu, Z.-Q., Development of Dominant Nuclear Male-Sterile Lines with a Blue Seed Marker in Durum and Common Wheat, Plant Breed., 2001, vol. 120, no. 1, pp. 79–81.CrossRefGoogle Scholar
  5. 5.
    Zheng, Q., Li, B., Mu, S., et al., Physical Mapping of Blue-Grained Gene(s) from Thinopyrum ponticum by GISH and FISH in a Set of Translocation Lines with Different Seed Colors in Wheat, Genome, 2006, vol. 49, no. 9, pp. 1109–1114.PubMedCrossRefGoogle Scholar
  6. 6.
    Piech, J. and Evans, L.E., Monosomic Analysis of Purple Grain Color in Hexaploid Wheat, Z. Pflanzenzuecht., 1979, vol. 82, pp. 212–217.Google Scholar
  7. 7.
    Dobrovolskaya, O., Arbuzova, V.S., Lohwasser, U., et al., Microsatellite Mapping of Complementary Genes for Purple Grain Color in Bread Wheat (Triticum aestivum L.), Euphytica, 2007, vol. 150, pp. 355–364.CrossRefGoogle Scholar
  8. 8.
    Hurd, E.A., Inheritance of Blue Color in Wheat, Can. J. Plant Sci., 1959, vol. 39, pp. 1–8.CrossRefGoogle Scholar
  9. 9.
    Li, Z., Mu, S., Zhou, H. and Wu, J., The Establishment and Application of Blue-Grained Monosomics in Wheat Chromosome Engineering, Cereal Res. Commun., 1986, vol. 14, pp. 133–137.Google Scholar
  10. 10.
    Keppenne, V.D. and Baenziger, P.S., Inheritance of the Blue Aleurone Trait in Diverse Wheat Crosses, Genome, 1990, vol. 33, pp. 525–529.CrossRefGoogle Scholar
  11. 11.
    El-Sharkawy, A.M.A., Cytogenetical Irregularities in the Transmission of the Blue Aleurone Character in Triticum-Agropyron Derivatives, Diss. Abstr., 1966: 26, Plant Breed. Abstr., 1967, vol. 37, no. 5983.Google Scholar
  12. 12.
    Bolton, E.F., Inheritance of Blue Aleurone and Purple Pericarp in Hexaploid Wheat, Diss. Abstr., 1968: 19, oder no. 68-13089, p. 844B, Plant Breed. Abstr., 1970, vol. 40, no. 2684.Google Scholar
  13. 13.
    Whelan, E.D.P., Transmission of an Alien Telocentric Addition Chromosome in Common Wheat That Confers Blue Seed Color, Genome, 1989, vol. 32, pp. 30–34.CrossRefGoogle Scholar
  14. 14.
    Cermeno, M.C. and Zeller, F.J., Cytological Investigations on the Identity of the Alien Chromosome Pair in Several European Blue-Grained Common Wheat Strains, in Proceedings of the 7th International Wheat Genetics Symposium, 1988, pp. 227–240.Google Scholar
  15. 15.
    Zeller, F.J. and Baier, A.C., Substitution des Weizenchromonomenpaares 4A durch das Roggenchromosoomenpraar 5R in dem Weihenstephaner Weizenstamm W 70a86 (Blaukorn), Z. Pflanzenzücht., 1973, no. 70, pp. 1–10.Google Scholar
  16. 16.
    Zeller, F.J., Identification of a Wheat-Agropyron and a Wheat-Rye Chromosome Substitution, Wheat Inform. Serv., 1976, nos. 41–42, pp. 48–52.Google Scholar
  17. 17.
    Jan, C.C., Dvorak, J., Qualset, C.O., and Soliman, K.M., Selection and Identification of a Spontaneous Alien Chromosome Translocation in Wheat, Genetics, 1981, vol. 98, pp. 389–398.PubMedGoogle Scholar
  18. 18.
    Knott, D.R., The Inheritance in Wheat of a Blue Endosperm Color Derived from Agropyron elongatum, Can. J. Bot., 1958, vol. 36, pp. 571–574.CrossRefGoogle Scholar
  19. 19.
    El-Sayed, M., Abdel-Aal Atef, A., and Hucl, P., Composition and Stability of Anthocyanins in Blue-Grained Wheat, J. Agric. Food Chem., 2003, vol. 51, pp. 2174–2180.CrossRefGoogle Scholar
  20. 20.
    El-Sayed, M., Abdel-Aal Atef, A., Abou-Arab Tamer, H., et al., Fractionation of Blue Wheat Anthocyanin Compounds and Their Contribution to Antioxidant Properties, J. Agric. Food Chem., 2008, vol. 56, pp. 11171–11177.CrossRefGoogle Scholar
  21. 21.
    Knievel, D.C., Abdel-Aal, E.-S.M., Rabalski, I., et al., Grain Color Development and the Inheritance of High Anthocyanin Blue Aleurone and Purple Pericarp in Spring Wheat (Triticum aestivum L.), J. Cereal Sci., 2009, vol. 50, p. 113.Google Scholar
  22. 22.
    Laikova, L.I., Arbuzova, V.S., Efremova, T.T., et al., Estimation of Productivity and Quality of the Grain in Immune Introgressive Lines of the Saratovskaya 29 Cultivar of Common Wheat, S-kh. Biol., Ser. Biol. Rastenii, 2007, no. 5, pp. 75–85.Google Scholar
  23. 23.
    Arbuzova, V.S., Efremova, T.T., and Laikova, L.I., Analysis of Spike Productivity Traits in Near-Isogenic Lines of the Common Wheat Cultivar Saratovskaya 29 Carrying Alien Marker Genes, Russ. J. Genet., 2010, vol. 46, no. 4, pp. 417–424.CrossRefGoogle Scholar
  24. 24.
    Soliman, K.El-D.M., Cytogenetic and Agronomic Evaluations of Blue Aleuron of Agropyron Transferred to Common Wheat (Triticum aestivum L.), Diss. Abstr. Int. B, 1976, vol. 37, no. 7, pp. 3225B–3225B.Google Scholar
  25. 25.
    Watanabe, N., Near-Isogenic Lines of Durum Wheat: Their Development and Plant Characteristics, Euphytica, 1994, vol. 72, pp. 143–147.CrossRefGoogle Scholar
  26. 26.
    Amadou, H.I., Kaltsikes, P.J., and Bebeli, P.J., Analysis of Near-Isogenic Lines of Durum Wheat (Triticum turgidum L. var. durum), Cereal Res. Commun., 2001, vol. 29, pp. 275–279.Google Scholar
  27. 27.
    Amadou, H.I., Kaltsikes, P.J., and Bebeli, P.J., Agronomic Characters of Near-Isogenic Lines of Durum Wheat (Triticum durum Desf.), Breed. Sci., 2003, vol. 53, pp. 319–324.CrossRefGoogle Scholar
  28. 28.
    Johnson, D.A., Richards, R.A., and Turner, N.C., Yield, Water Relation, Gas Exchange and Surface Reflectance of Near-Isogenic Wheat Lines Differing in Glaucousness, Crop Sci., 1983, vol. 23, pp. 318–325.CrossRefGoogle Scholar
  29. 29.
    Richards, R.A., Rawson, H.M., and Johnson, D.A., Glaucousness in Wheat: Its Development and Effect on Water-Use Efficiency, Gas Exchange and Photosynthetic Temperatures, Aust. J. Plant Physiol., 1986, vol. 13, pp. 465–473.Google Scholar
  30. 30.
    Laikova, L.I., Arbuzova, V.S., Efremova, T.T., and Popova, O.M., Genetic Analysis of Anthocyanin of the Anthers and of the Culm Pigmentation in Common Wheat, Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1428–1433.CrossRefGoogle Scholar
  31. 31.
    Arbuzova, V.S., Maystrenko, O.I., and Popova, O.M., Development of Near-Isogenic Lines of the Common Wheat Cultivar ’saratovskaya 29’, Cereal Res. Commun., 1998, vol. 26, no. 1, pp. 39–46.Google Scholar
  32. 32.
    Gaidalenok, R.F. and Maistrenko, O.I., Study of Metaphase I of Meiosis in F1 Hybrids from Crosses between Monosomics of Chinese Spring and Several Varieties Showing Undisturbed Chromosome Pairing, Tsitogeneticheskie issledovaniya aneuploidov myagkoi pshenitsy (Cytogenetic Studies of Bread Wheat Aneuploids), Maistrenko, O.I. and Khvostov, V.V., Eds., Novosibirsk, 1973, pp. 77–94.Google Scholar
  33. 33.
    Mukai, Y. and Gill, B.C., Detection of Barley Chromatin Added to Wheat by Genomic in situ Hybridization, Genome, 1991, vol. 34, pp. 448–452.CrossRefGoogle Scholar
  34. 34.
    Badaeva, E.D., Badaev, N.S., and Filatenko, A.A., Intraspecific Karyotype Divergence in Triticum araraticum, Plant Syst. Evol., 1994, vol. 192, pp. 117–145.CrossRefGoogle Scholar
  35. 35.
    Plaschke, J., Ganal, M.W., Röder, M.S., Detection of Genetic Diversity in Closely Related Bread Wheat Using Microsatellite Markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007.CrossRefGoogle Scholar
  36. 36.
    Röder M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007–2023.PubMedGoogle Scholar
  37. 37.
    Ganal, M.V., and Röder, M.S., Microsatellite and SNP Markers in Wheat Breeding, Genomics-Assisted Crop Improvement, vol. 2: Genomics Applications in Crops, Varshney, R.K. and Tuberosa, R. Eds., Springer-Verlag, Dordrecht, pp. 1–24.Google Scholar
  38. 38.
    Metody otsenki tekhnologicheskikh kachestv zerna: Nauchnyi sovet po kachestvu zerna (Methods of Assessment of Grain Technological Characteristics: Scientific Council for Grain Quality), Moscow, 1971.Google Scholar
  39. 39.
    Rokitskii, P.F., Vvedenie v statisticheskuyu genetiku (Introduction into Statistical Genetics), Minsk: Vysheishaya Shkola, 1974.Google Scholar
  40. 40.
    Vasil’eva, L.A., Biologicheskaya statistika v biologii, meditsine i sel’skom khozyaistve (Biological Statistics in Biology, Medicine, and Agriculture), Novosibirsk: Inst. Tsitol. Genet. Sib. Otd. Ross. Akad. Nauk, 2007.Google Scholar
  41. 41.
    Larson, R.I., and Atkinson, T.G., Identity of the Wheat Chromosomes Replaced by Agropyron Chromosomes in a Triple Alien Chromosome Substitution Line Immune to Wheat Streak Mosaic, Can. J. Genet. Cytol., 1970, vol. 12, pp. 145–150.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. S. Arbuzova
    • 1
  • E. D. Badaeva
    • 2
  • T. T. Efremova
    • 1
  • T. S. Osadchaya
    • 1
  • N. V. Trubacheeva
    • 1
  • O. B. Dobrovolskaya
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations