Advertisement

Russian Journal of Genetics

, Volume 48, Issue 4, pp 357–368 | Cite as

Development of symbiogenetic approaches for studying variation and heredity of superspecies systems

  • I. A. Tikhonovich
  • N. A. Provorov
Reviews and Theoretical Articles

Abstract

Based on the knowledge on the structural and functional organization, ecological potential, and evolution of symbiotic complexes, we suggest to formulate the subject, aims, and methodology of symbiogenetics as a science studying the genetic control of interspecies interactions. It is based on the view on the superspecies system of variation and heredity (symbiogenome) controlling the development of novel properties lacking in the unitary organisms and radically extending their adaptive potentials. Investigation of symbiogenomes represents the first step toward genetic analysis of microbiomes and metagenomes, which are superspecies hereditary systems responsible for developing the multicomponent complexes of biocenotic type, such as rumen microflora, endophytic and rhizospheric communities, soil microbial consortia. The approaches of symbiogenetics can be used for developing biotechnologies of integration of plants or animals with beneficial microbes ensuring host nutrition and development as well as resistance to biotic and abiotic stresses.

Keywords

Arbuscular Mycorrhiza Symbiotic System Symbiotic Partner Sexual Process Free Living Organism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watson, R.A. and Pollack, J.B., A Computational Model of Symbiotic Composition in Evolutionary Transitions, BioScience, 2003, vol. 69, pp. 187–209.Google Scholar
  2. 2.
    De Bary, A., Die Erscheinung der Symbiose, Strassburg: Karl J. Trübner, 1879.Google Scholar
  3. 3.
    Margulis, L., Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons, San Francisco: Freeman, 1992.Google Scholar
  4. 4.
    Loegering, W.Q., Current Concepts of Inter-Organismal Genetics, Annu. Rev. Phytopathol., 1978, vol. 16, pp. 309–320.CrossRefGoogle Scholar
  5. 5.
    Flor, H.H., Genetics of Pathogenicity in Melampsora lini, J. Agric. Res., 1946, vol. 73, pp. 335–357.Google Scholar
  6. 6.
    Nutman, P.S., Genetic Factors Concerned in the Symbiosis of Clover and Nodule Bacteria, Nature, 1946, vol. 157, pp. 463–465.CrossRefGoogle Scholar
  7. 7.
    Seckbach, J., Symbiosis: Mechanisms and Model Systems, Dordrecht: Kluwer, 2002.Google Scholar
  8. 8.
    Schardl, C.L., Leuchtmann, A., and Spiering, M.J., Symbioses of Grasses with Seedborne Fungal Endophytes, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 315–340.PubMedCrossRefGoogle Scholar
  9. 9.
    Parsons, R., Nodule Infection and Regulation in the Gunnera-Nostoc Symbiosis, Proc. R. Irish Acad. Sci., 2002, vol. 102B, pp. 41–43.CrossRefGoogle Scholar
  10. 10.
    Tikhonovich, I.A. and Provorov, N.A., Cooperation of Plants and Microorganisms: New Approaches to Construction of Ecologically Sustainable Agrosystems, Usp. Sovrem. Biol., 2007, vol. 127, pp. 339–357.Google Scholar
  11. 11.
    Provorov, N.A. and Vorobyov, N.I., Evolution of Symbiotic Bacteria in “Plant-Soil” Systems: Interplay of Molecular and Population Mechanisms, Progress in Environmental Microbiology, Kim, M.-B., Ed., New York: Nova Sci. Publ., 2008, pp. 11–67.Google Scholar
  12. 12.
    Jones, K.M., Kobayashi, H., Davies, B.W., et al., How Rhizobial Symbionts Invade Plants: The Sinorhizobium-Medicago Model, Nat. Rev. Microbiol., 2007, vol. 5, pp. 619–633.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka, A., Christensen, M.J., Takemoto, D., et al., Reactive Oxygen Species Play a Role in Regulating a Fungus-Perennial Ryegrass Mutualistic Interaction, Plant Cell, 2006, vol. 12, pp. 1052–1066.CrossRefGoogle Scholar
  14. 14.
    Brewin, N.J., Plant Cell Wall Remodeling in the Rhizobium-Legume Symbiosis, Crit. Rev. Plant Sci., 2004, vol. 23, pp. 1–24.CrossRefGoogle Scholar
  15. 15.
    Kneip, C., Lockhart, P., Vo, C., et al., Nitrogen Fixation in Eukaryotes—New Models for Symbiosis, BMC Evol. Biol., 2007, vol. 7, pp. 55–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Barker, S.J., Tagu, D., and Delp, G., Regulation of Root and Fungal Morphogenesis in Mycorrhizal Symbiosis, Plant Physiol., 1998, vol. 116, pp. 1201–1207.CrossRefGoogle Scholar
  17. 17.
    Bago, B., Zipfel, W., Williams, R.M., et al., Translocation and Utilization of Fungal Storage Lipid in the Arbuscular Mycorrhizal Symbiosis, Plant Physiol., 2002, vol. 128, pp. 108–124.PubMedCrossRefGoogle Scholar
  18. 18.
    Hahn, M. and Mendgen, K., Signal and Nutrient Exchange in Biotrophic Plant-Fungus Interfaces, Curr. Opin. Plant Biol., 2001, vol. 4, pp. 322–327.PubMedCrossRefGoogle Scholar
  19. 19.
    Schuler, A., Molecular Phylogeny, Taxonomy and Evolution of Geosiphon pyriformis and Arbuscular Mycorrhizal Fungi, Plant Soil, 2002, vol. 244, pp. 75–83.CrossRefGoogle Scholar
  20. 20.
    D’yakov, Yu.T., Ozeretskovskaya, O.L., Dzhavakhiya, V.G., and Bagirova, S.F., Obshchaya i molekulyarnaya fitopatologiya (General and Molecular Phytopathology), Moscow: Izd. Obshchestvo fitopatologov, 2001.Google Scholar
  21. 21.
    Borisov, A.Y., Danilova, T.N., Koroleva, T.A., et al., Pea (Pisum sativum L.) Regulatory Genes Controlling Development of Nitrogen-Fixing Nodules and Arbuscular Mycorrhiza: Fundamentals and Applications, Biologia, 2004, vol. 59, pp. 137–144.Google Scholar
  22. 22.
    Beveridge, C.A., Mathesius, U., Rose, R.J., et al., Common Regulatory Themes in Meristem Development and Whole-Plant Homeostasis, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 44–51.PubMedCrossRefGoogle Scholar
  23. 23.
    Provorov, N.A., Vorob’ev, N.I., and Tikhonovich, I.A., Evolution of Symbiotic Systems: Programmed Selection, Stipulated by Preadaptations and Reverse Relations of Partners, Charl’z Darvin i sovremennaya biologiya (Charles Darwin and Modern Biology), Kolchinskii, E.I., Ed., S. Peterburg: Nestor-Istoria, 2010, pp. 470–485.Google Scholar
  24. 24.
    Inge-Vechtomov, S.G., System of Genotype, Fiziologicheskaya genetika (Physiological Genetics), Lobashev, M.E. and Inge-Vechtomov, S.G., Eds., Leningrad: Meditsina, 1976, pp. 57–115.Google Scholar
  25. 25.
    Korochkin, L.I., Biologiya individual’nogo razvitiya (Biology of Ontogenesis), Moscow: Mosk. Gos. Univ., 2002.Google Scholar
  26. 26.
    Kiers, E.T., Rousseau, R.A., West, S.A., et al., Host Sanctions and the Legume-Rhizobium Mutualism, Nature, 2003, vol. 425, pp. 78–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.Google Scholar
  28. 28.
    Law, R. and Lewis, D.H., Biotic Environments and the Maintenance of Sex—Some Evidence from Mutualistic Symbioses, Biol. J. Linn. Soc., 1983, vol. 20, pp. 249–276.CrossRefGoogle Scholar
  29. 29.
    Parbery, D.G., Trophism and the Ecology of Fungi Associated with Plants, Biol. Rev., 1996, vol. 71, pp. 473–527.CrossRefGoogle Scholar
  30. 30.
    Lutova, L.A., Provorov, N.A., Tikhodeev, O.N., et al., Genetika razvitiya rastenii (Genetics of Plant Development), Inge-Vechtomov, S.G., Ed., S. Peterburg: Nauka, 2000.Google Scholar
  31. 31.
    Hotopp, J.C., Clark, M.E., Oliveira, D.C., et al., Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes, Science, 2007, vol. 21, pp. 1753–1756.CrossRefGoogle Scholar
  32. 32.
    Lederberg, J. and McCray, A.T., ’Ome Sweet’ Omics—a Genealogical Treasury of Words, Scientist, 2001, vol. 15, p. 8.Google Scholar
  33. 33.
    Brundrett, M.C., Coevolution of Roots and Mycorrhizas of Land Plants, New Phytol., 2002, vol. 154, pp. 275–304.CrossRefGoogle Scholar
  34. 34.
    Berg, G., Krechel, A., Ditz, M., et al., Endophytic and Ectophytic Potato-Associated Bacterial Communities Differ in Structure and Antagonistic Function against Plant Pathogenic Fungi, FEMS Microb. Ecol., 2005, vol. 51, pp. 215–229.CrossRefGoogle Scholar
  35. 35.
    Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbioses of Plants and Microorganisms: Molecular Genetics of Future Agrosystems), S. Peterburg: Izd. S. Peterburg Gos. Univ., 2009.Google Scholar
  36. 36.
    Lyubishchev, A.A., From the Correspondence of S.V. Meien and A.A. Lyubishchev (1968–1972), Priroda, 1990, no. 4, p. 81.Google Scholar
  37. 37.
    Janzen, D.H., When Is It Coevolution?, Evolution, 1980, vol. 34, pp. 611–612.CrossRefGoogle Scholar
  38. 38.
    Provorov, N.A., Coevolution of Leguminous Plants and Nodule Bacteria: Taxonomic and Genetic Aspects, Zh. Obshch. Biol., 1996, vol. 57, pp. 52–78.Google Scholar
  39. 39.
    Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, London: Academic, 2008, 3rd ed.Google Scholar
  40. 40.
    de Bruijn, F.J., Davey, M.E., Berges, H., et al., Genetics and Genomics of Nutrient Deprivation-Induced, Microaerobic and Symbiotic Gene Expression in Sinorhizobium meliloti, Biology of Plant-Microbe Interactions, Tikhonovich, I.A., Lugtenberg, B.J.J., and Provorov, N.A., Eds., S.-Peterburg: Biont, 2004, pp. 405–410.Google Scholar
  41. 41.
    Udvardi, M., Bock, V., Colebatch, G., et al., Genetic Reorganization of Legume Transport and Metabolism during Symbiotic Nitrogen Fixation, Biology of Plant-Microbe Interactions, Tikhonovich, I.A., Lugtenberg, B.J.J., and Provorov, N.A., Eds., St. Petersburg: Biont, 2004, pp. 490–492.Google Scholar
  42. 42.
    Moran, N.A., Genome Evolution in Symbiotic Bacteria, ASM News, 2002, vol. 68, pp. 499–505.Google Scholar
  43. 43.
    Provorov, N.A., Molecular Basis of Symbiogenic Evolution: From Free-Living Bacteria to Organelles, Zh. Obshch. Biol., 2005, vol. 66, no. 5, pp. 371–388.PubMedGoogle Scholar
  44. 44.
    Douglas, A.E., Symbiotic Interactions, Oxford: Oxford Univ. Press, 1994.Google Scholar
  45. 45.
    Parniske, M., Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses, Nat. Rev. Microbiol., 2008, vol. 6, pp. 763–775.PubMedCrossRefGoogle Scholar
  46. 46.
    Vanderplank, J.E., Host-Pathogen Interaction in Plant Disease, New York: Academic, 1982.Google Scholar
  47. 47.
    Riesenfeld, C.S., Schloss, P.D., and Handelsmann, J., Metagenomics: Genomic Analysis of Microbial Communities, Ann. Rev. Genet., 2004, vol. 38, pp. 525–552.PubMedCrossRefGoogle Scholar
  48. 48.
    Sanchez, L., Weidmann, S., Arnould, C., et al., Pseudomonas fluorescens and Glomus mosseae Trigger DMI3-Dependent Activation of Genes Related to a Signal Transduction Pathway in Roots of Medicago truncatula, Plant Physiol., 2005, vol. 139, pp. 1065–1077.PubMedCrossRefGoogle Scholar
  49. 49.
    Minerdi, D., Bianciotto, V., and Bonfante, P., Endo-symbiotic Bacteria in Mycorrhizal Fungi: From Their Morphology to Genomic Sequences, Plant Soil, 2002, vol. 244, pp. 211–219.CrossRefGoogle Scholar
  50. 50.
    Balachandar, D., Raja, P., Kumar, K., et al., Non-Rhizobial Nodulation in Legumes, Biotechnol. Mol. Biol. Rev., 2007, vol. 2, pp. 49–57.Google Scholar
  51. 51.
    Tikhonovich, I.A. and Provorov, N.A., Agricultural Microbiology—the Basis of Ecologically Sustainable Agroindustry: Fundamental and Applied Aspects, S-kh. Biol., 2011, no. 3, pp. 3–9.Google Scholar
  52. 52.
    Zook, D., Prioritizing Symbiosis to Sustain Biodiversity: Are Symbionts Keystone Species? Symbiosis: Mechanisms and Model Systems, Seckbach, J., Ed., Dordrecht: Kluwer, 2002, pp. 3–12.Google Scholar
  53. 53.
    Lopez, M.F., Münner, P., Willmann, A., et al., Increased Trehalose Biosynthesis in Hartig Net Hyphae of Ectomycorrhizas, New Phytol., 2007, vol. 174, pp. 389–398.PubMedCrossRefGoogle Scholar
  54. 54.
    Sessitsch, A., Howieson, J.G., Perret, X., et al., Advances in Rhizobium Research, Crit. Rev. Plant Sci., 2002, vol. 21, pp. 323–378.CrossRefGoogle Scholar
  55. 55.
    Larcher, W., Physiological Plant Ecology, New York: Springer-Verlag, 1980.CrossRefGoogle Scholar
  56. 56.
    Provorov, N.A. and Tikhonovich, I.A., Ecological and Genetic Principals of Plant Breeding for More Effective Interactions with Microorganisms, S-kh. Biol., 2003, vol. 3, no. 4, pp. 30–38.Google Scholar
  57. 57.
    Tikhonovich, I.A. and Provorov, N.A., Epigenetics of Ecological Niches, Ekol. Genet., 2010, vol. 8, no. 4, pp. 30–38.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.All-Russia Research Institute of Agricultural MicrobiologyRussian Academy if Agricultural SciencesSt. Petersburg, PushkinRussia
  2. 2.Department of Genetics and BreedingSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations