Russian Journal of Genetics

, Volume 48, Issue 1, pp 63–69 | Cite as

Comparative cytogenetic study of the forms of Macleaya cordata (Willd.) R. Br. From different localities

  • T. E. Samatadze
  • A. V. Zelenin
  • S. N. Suslina
  • A. V. Amosova
  • K. V. Popov
  • T. N. Zagumennikova
  • A. N. Tsytsylin
  • V. A. Bykov
  • O. V. Muravenko
Plant Genetics


A comparative cytogenetic study of two introduced forms of Makleaya cordata (Willd.) R. Br. = syn. Bocconia cordata Willd. grown in different ecological and geographical regions (Moscow and Donetsk areas) was carried out. In the study, a complex of methods utilizing various chromosomal markers, i.e., C- and DAPI-banding technique, fluorescence in situ hybridization (FISH) with probes of 26S and 5S rDNA, as well as estimation of the total area of C-positive regions (C-HCH) in prophase nucleoli and meiosis analysis, was used. In the karyotypes (2n = 20), each chromosome was identified on the basis of C-banding and FISH patterns and the chromosome ideograms were built. Pericentrometric and telomeric C-positive bands in chromosomes of the Moscow form karyotype were found to be smaller and intercalary bands, larger than the corresponding bands in the M. cordata form grown in Donetsk. It was found that the content of C-HCH in prophase nucleoli in the form of M. cordata grown in Donetsk was higher than in the form grown in Moscow. In both forms sites of 26S rDNA and 5s rDNA were localized on satellite chromosome 1 and on chromosome 4 respectively but the signals were more intensive in the plant form grown in Donetsk. The results of this study enable selecting M. cordata forms for use in pharmacology and recommending them for cultivation in various ecological and geographical regions.


Isoquinoline Alkaloid Matricaria Chamomilla Prophase Nucleus Intercalary Band Intercalary Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hopfgartner, K., Beitrag zur Kenntniss der Alkaloide von Macleaya cordata R. Br., Univ. Innsbruck, 1898, pp. 179–210.Google Scholar
  2. 2.
    Slavik, J. and Slavikova, L., Alkaloide der Mohngewache (Papaveraceae): XXVIII. Ueber die Alkaloide aus Macleaya cordata (Willd.) R. Br., J. Appelt. Collect. Czech. Chem. Commun., 1965, vol. 30, no. 3, pp. 887–891.Google Scholar
  3. 3.
    Kirjakov, H.G., Isolation and Characterization of Three Minor Alkaloids of Bocconia (Macleaya) cordata Wild., Folia Med., 1972, vol. 14, no. 2, pp. 75–78.Google Scholar
  4. 4.
    Vichkanova, S.A., Martynova, R.G., and Fateeva, T.V., Experimental and Clinical Data on Antimicrobial Medication Sangviritrin, Novye Lekarstvennye Preparaty, 1984, no. 9, pp. 2–7.Google Scholar
  5. 5.
    Vichkanova, S.A., Clinical Study of Plant Antimicrobial Medication Sangviritrin, Farmatsiya, 2003, no. 2, pp. 31–34.Google Scholar
  6. 6.
    Bushueva, G.R., Savina, T.A., Fateeva, T.V., and Bykov, V.A., Macleaya cordata (Willd.) R. Br. Cell Culture—the Source of Antimicrobial Biologically Active Substances, Vopr. Biol. Med. Farmatsevticheskoi Khim., 2010, no. 2, pp. 33–38.Google Scholar
  7. 7.
    Kaul, B.L., Tandon, V., and Choudhary, D.K., Cytogenetic Studies in Papaver somniferum L., Proc. Plant Sci., 1979, vol. 88, no. 4, pp. 321–325.Google Scholar
  8. 8.
    Milo, J., Levy, A., Ladizinsky, G., and Palevitch, D., Phylogenetic and Genetic Studies in Papaver Section Oxytona: Cytogenetics, Isozyme Analysis and Chloroplast DNA Variation, Theor. App. Genet., 1987, vol. 75, no. 5, pp. 795–802.Google Scholar
  9. 9.
    Blattner, F.R. and Kadereit, J.W., Three Intercontinental Disjunctions in Papaveraceae Subfamily Chelidonioideae: Evidence from Chloroplast DNA, Plant Syst. Evol., 1995, suppl. 9, pp. 147–157.Google Scholar
  10. 10.
    Blattner, F.R. and Kadereit, J.W., Morphological Evolution and Ecological Diversification of the Forest-Dwelling Poppies (Papaveraceae: Chelidonioideae) as Deduced from a Molecular Phylogeny of the ITS Region, Plant Syst. Evol., 1999, vol. 219, pp. 181–197.CrossRefGoogle Scholar
  11. 11.
    Sugiura, T., A List of Chromosome Numbers in Angiospermous Plants: II, Proc. Imp. Acad. Tokyo, 1936, vol. 12, no. 5, pp. 144–146.Google Scholar
  12. 12.
    Sugiura, T., A List of Chromosome Numbers in Angiospermous Plants: IV, Proc. Imp. Acad. Tokyo, 1937, vol. 13, no. 10, p. 430.Google Scholar
  13. 13.
    Bowden, W.M., Diploidy, Polyploidy and Winter Hardiness Relationship in the Flowering Plants, Am. J. Botany, 1940, vol. 27, no. 6, pp. 357–371.CrossRefGoogle Scholar
  14. 14.
    Ernst, W.R., Chromosome Numbers of Some Papaveraceae, Contr. Dudley Herb., 1959, vol. 5, no. 5, pp. 137–139.Google Scholar
  15. 15.
    Safonova, I.N., Chromosome Numbers of Some Representatives of the Papaveraceae Family, Botanicheskii Zh., 1988, vol. 70, no. 5, p. 741.Google Scholar
  16. 16.
    Safonova, I.N., The Karyotypical Analysis of the Genera Dicranostigma, Hylomecon, Macleaya, Sanguinaria, Stylophorum (Chelidonioideae, Papaveraceae), Botanicheskii Zh., 1994, vol. 79, no. 3, pp. 70–76.Google Scholar
  17. 17.
    Abizov, E.A., Botanical and Pharmacognostical Study of the Genus Macleaya R. Br. Representatives, Extended Abstract of Cand. Sci. (Pharmaceutics) Dissertation, Moscow, 2004, p. 24.Google Scholar
  18. 18.
    Borodina-Grabovskaya, A.E., Avizov, E.A., and Luferov, A.N., Lectotypification of Bocconia microcarpa Maxim. (Papaveraceae), Turczaninowia, 2005, vol. 8, no. 4, pp. 16–18.Google Scholar
  19. 19.
    Kodash, A.G., Zakharova, O.I., Sheverdinov, V.T., et al., Sangviritrin Content Dynamics in Macleaya cordata and Macleaya microcarpa in the North Caucasus, Rastitel’nye Resursy, 1975, vol. 9, no. 2, pp. 217–219.Google Scholar
  20. 20.
    Smok, G.K. and Potopal’skii, L.I., Introduced Species of the Genus Macleaya L.—Perspective Alkaloid Containing Plants and the Potential of Their Resource Base Formation in Ukraine, in Okhrana, izuchenie i obogashchenie rastenii mira (Conservation, Investigation, and Improvement of World Plants), Kiev, 1983, issue 10, pp. 46–49.Google Scholar
  21. 21.
    Greihuber, J. and Speta, F., Giemsa Karyotypes and Their Evolutionary Significance in the Scilla bifolia, S. drunensis and S. vindobonensis (Liliaceae), Plant Syst. Evol., 1977, vol. 127, nos. 1–2, pp. 171–190.CrossRefGoogle Scholar
  22. 22.
    Greihuber, J. and Speta, F., Quantitative Analysis of C-Banded Karyotypes and Systematics in the Cultivated Species of the Scilla siberica Group (Liliaceae), Plant Syst. Evol., 1978, vol. 129, no. 1, pp. 63–109.CrossRefGoogle Scholar
  23. 23.
    Samatadze, T.E., Muravenko, O.V., Klimakhin, G.I., and Zelenin, A.V., Intraspecific Chromosome Polymorphism in Matricaria chamomilla L. (syn. M. recutita L.) Studied by the C-banding Technique, Russ. J. Genet., 1997, vol. 33, no. 1, pp. 111–113Google Scholar
  24. 24.
    Sousa, S.M., Silva, P.S., Torres, G.A., and Viccini, L.F., Chromosome Banding and Essential Oils Composition of Brazilian Accessions of Lippia alba (Verbenaceae), Biologia, 2009, vol. 64, no. 4, pp. 711–715.CrossRefGoogle Scholar
  25. 25.
    Chuksanova, N.A., Heterochromatin in the Plant Chromosome Evolution, Tsitologiya, 1971, vol. 13, no. 6, pp. 776–783.Google Scholar
  26. 26.
    Chuksanova, N.A., Plant Karyotypes Evolution, Usp. Sovrem. Genet., 1974, vol. 5, pp. 200–209.Google Scholar
  27. 27.
    Prokof’eva-Bel’govskaya, A.A., Heterochromatin and the Chromosome Polymorphism, Mol. Biol., 1977, vol. 11, no. 6, pp. 1325–1333.Google Scholar
  28. 28.
    Pilch, Y., Analysis of the Rye Chromosome Constitution and the Amount of Telomeric Heterochromatin in the Widely and Narrowly Adapted Hexaploid Triticales, Theor. App. Genet., 1981, vol. 60, no. 3, pp. 145–151.CrossRefGoogle Scholar
  29. 29.
    Muravenko, O.V., Nasarova, M.A., Badaeva, E.D., and Zelenin, A.V., Intraspecific C-Banding Chromosome Polymorphism of Hordeum spontaneum C. Koch, in 5th International Oat Conference and 7th International Barley Genetics Symposium, 1997, vol. 1, pp. 363–365.Google Scholar
  30. 30.
    Trotsan, I.A., Specificity of Macleaya cordata (Willd.) R.Br. Development and Yield Formation in Kuban, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Krasnodar: State Agric. Univ., 1998, p. 17.Google Scholar
  31. 31.
    Malakhova, L.A., Population Cytogenetics of Flowering Plants, in Itogi Nauki Tekh., Ser.: Obshch. Genet., Evol. Populyatsionnaya Genet., Moscow, 1978, pp. 92–129.Google Scholar
  32. 32.
    Muravenko, O.V., and Zelenin, A.V., Chromosomal Organization of the Genomes of Small Chromosome Plants, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1338–1350.CrossRefGoogle Scholar
  33. 33.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Comparative Genome Analysis in Two Flax Species by C-Banding Patterns, Russ. J. Genet., 2001, vol. 37, no. 3, pp. 253–256.CrossRefGoogle Scholar
  34. 34.
    Muravenko, O.V., Amosova, A.V., Samatadze, T.E., et al., 9-Aminoacridin—an Efficient Reagent to Improve Human and Plant Chromosome Banding Patterns and to Standardize Chromosome Image Analysis, Cytometry, 2003, vol. 51, pp. 52–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Muravenko, O.V., Yurkevich, O.Yu., Bolsheva, N.L., et al., Comparison of Genomes of Eight Species of Sections Linum and Adenolinum from the Genus Linum Based on Chromosome Banding, Molecular Markers and RAPD Analysis, Genetika, 2009, vol. 135, no. 2, pp. 245–255.Google Scholar
  36. 36.
    Barykina, R.P., Veselova, T.D., Devyatov, A.G., et al., Spravochnik po botanicheskoi mikrotekhnike: Osnovy i metody (Botanical Micro Equipment Reference Book (Basics and Methods))), Moscow: Moscow Gos. Univ., 2004.Google Scholar
  37. 37.
    Semenova, O.Yu., Samatadze, T.E., Zelenin, A.V., and Muravenko, O.V., Comparative Study of the Species of Adenolinum and Stellerolinum Sections by Means of FISH Technique, Biol. Membrany, 2006, vol. 23, no. 6, pp. 453–460.CrossRefGoogle Scholar
  38. 38.
    Fukui, K. and Mukai, Y., Condensation Pattern as a New Image Parameter for Identification of Small Chromosomes in Plant, Jpn. J. Genet., 1988, vol. 63, pp. 359–366.CrossRefGoogle Scholar
  39. 39.
    Majlis Olin-Fatih and Heneen, W.K., A New Method for Differential Staining of Brassica Metaphase Chromosomes, and Karyotypes of B. campestris, B. oleracea, and B. napus, Hereditas, 1994, vol. 120, pp. 253–259.CrossRefGoogle Scholar
  40. 40.
    Pierozzi, N.I., Galgaro, M.L., and Lopes, C.L., Application of C-Banding in Two Arachis Wild Species, Arachis pintoi Krapov. and A. villosulicarpa Hoehne to Mitotic Chromosome Analyses, Caryologia, 2001, vol. 54, no. 4, pp. 377–384.Google Scholar
  41. 41.
    Las Penas, M.L., Bernardello, G., and Kiesling, R., Karyotypes and Fluorescent Chromosome Banding in Pyrrhocactus (Cactaceae), Plant Syst. Evol., 2008, vol. 272, pp. 211–222.CrossRefGoogle Scholar
  42. 42.
    Butorina, A.K., Muraya, L.S., and Isakov, Yu.N., Growth Condition Effect on Activity of Ribosomal Cistrons in the Scotch Pine, Ekologicheskaya genetika rastenii i zhivotnykh (Ecological Genetics of Plants and Animals), (Proc. All-Union Conf.), Chisinau: Shtiintsa, 1981, vol. 1, pp. 11–12.Google Scholar
  43. 43.
    Muravenko, O.V., Badaev, N.S., Borisov, Yu.M., et al., Karyotype Formation in Congener Barley Cultivars, Genetika (Moscow), 1991, vol. 27, no. 12, pp. 2109–2118.Google Scholar
  44. 44.
    Prokofyeva-Belgovskaya, A.A., Geterokhromaticheskie raiony khromosom (Heterochromatic Regions of Chromosomes), Moscow: Nauka, 1986.Google Scholar
  45. 45.
    Badaeva, E.D., Boguslavsky, R.L., Badaev, N.S., and Zelenin, A.V., Intraspecific Chromosomal Polymorphism of Triticum araraticum (Poaceae) Detected by CBanding Technique, Plant Syst. Evol., 1990, vol. 169, pp. 13–24.CrossRefGoogle Scholar
  46. 46.
    Samatadze, T.E., Muravenko, O.V., and Zelenin, A.V., Comparison of C-Banded Chromosomes in Karyotypes of Three Species of the Genus Matricaria L., Russ. J. Genet., 1998, vol. 34, no. 12, pp. 1469–1473.Google Scholar
  47. 47.
    Samatadze, T.E., Muravenko, O.V., Popov, K.V., and Zelenin, A.V., Genome Comparison of the Matricaria chamomilla L. Varieties by the Chromosome C- and OR-Banding Patterns, Caryologia, 2001, vol. 54, no. 4, pp. 299–306.Google Scholar
  48. 48.
    Rachinskaya, O.A., Lemesh, V.A., Muravenko, O.V., et al., Genetic Polymorphism of Flax Linum usitatissimum Based on the Use of Molecular Cytogenetic Markers, Russ. J. Genet., 2011, vol. 47, no. 1, pp. 65–75.CrossRefGoogle Scholar
  49. 49.
    Nevruzov, E.N., Influence Ecological Factors on the Accumulation of Biologically Active Substances in Plants, Novye i netraditsionnye rasteniya i perspektivy ikh ispol’zovaniya (New and Unconventional Plants and the Perspectives of Their Use), (Proc. 2nd Int. Symposium), 1997, vol. 2, pp. 73–76.Google Scholar
  50. 50.
    Fefelova, S.G., Specificity of Alkaloid and Microelements Accumulation in False Hellebors of East Transbaikal in Relation to Ecological and Phytocenotic Factors, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Ulan-Ude, 2007, p. 20.Google Scholar
  51. 51.
    Moscone, E.A., Lambrou, M., and Ehrendorfer, F., Fluorescent Chromosome Banding in Cultivated Species of Capsicum (Solanaceae), Plant Syst. Evol., 1996, vol. 202, pp. 37–63.CrossRefGoogle Scholar
  52. 52.
    Pinto-Maglio, C.A.F., Cytogenetics of Coffee, Braz. J. Plant Physiol., 2006, vol. 18, no. 1, pp. 37–44.CrossRefGoogle Scholar
  53. 53.
    Mukai, Y., Endo, T.R., and Gill, B.S., Physical Mapping of the 18S-26S rRNA Multigene Family in Common Wheat: Identification of a New Locus, Chromosoma, 1991, vol. 100, pp. 71–78.CrossRefGoogle Scholar
  54. 54.
    Zoldos, D., Papes, V., Cerbah, M., et al., Molecular-Cytogenetic Studies of Ribosomal Genes and Heterochromatin Reveal Conserved Genome Organization among 11 Quercus Species, Theor. App. Genet., 1999, vol. 99, pp. 969–977.CrossRefGoogle Scholar
  55. 55.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Square of Heterochromatic Regions in Nuclei and Chromosomes as an Measure of Genome Variation in Cultivated Flax, Biol. Membrany, 2007, vol. 24, no. 6, pp. 435–441.Google Scholar
  56. 56.
    Sybenga, J., Recombination and Chiasmata: Few but Intriguing Discrepancies, Genome, 1996, vol. 39, no. 3, pp. 473–484.PubMedCrossRefGoogle Scholar
  57. 57.
    Shain, S.S., Denisenkova, A.I., Savina, A.A., and Sheichenko, V.I., Some Physiological and Biochemical Characteristics of Plume Poppy (Macleaya) Plants and the Perspectives of Their Use under Conditions of Culture Cultivation, Tr. Komi Nauch. Tsentra Uralskogo Otdel. Ross. Akad. Nauk, 1997, no. 150, pp. 110–114.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. E. Samatadze
    • 1
    • 2
  • A. V. Zelenin
    • 1
  • S. N. Suslina
    • 2
  • A. V. Amosova
    • 1
  • K. V. Popov
    • 1
  • T. N. Zagumennikova
    • 3
  • A. N. Tsytsylin
    • 3
  • V. A. Bykov
    • 2
    • 3
  • O. V. Muravenko
    • 1
  1. 1.Engehardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Peoples’ Friendship University of RussiaMoscowRussia
  3. 3.All-Russia Institute of Medicinal and Aromatic PlantsRussian Academy of Agricultural SciencesMoscowRussia

Personalised recommendations