Advertisement

Russian Journal of Genetics

, Volume 48, Issue 1, pp 1–14 | Cite as

Mycobacterium tuberculosis mutants with multidrug resistance: History of origin, genetic and molecular mechanisms of resistance, and emerging challenges

  • A. A. Prozorov
  • M. V. Zaichikova
  • V. N. Danilenko
Theoretical Articles and Reviews

Abstract

The review summarizes the data on the Mycobacterium tuberculosis mutations that lead to multidrug resistance (MDR) to various antibiotics. MDR strains arose over the past 30 years as a variety of antituberculosis drugs were introduced in medicine, and they largely discount the results of chemotherapy for tuberculosis. The most dangerous of them are strains with extensive drug resistance (XDR), which are resistant to four or five different drugs on average. The molecular mechanisms that make a strain resistant are considered. XDR and MDR strains result from successive and usually independent resistance mutations, which arise in various regions of the mycobacterial genome. In addition, the formation of resistant strains is affected by the phenomenon of tolerance and mycobacterial latency in infected tissues.

Keywords

Tuberculosis Isoniazid Mycobacterium Tuberculosis Ethambutol Pyrazinamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corbett, E.L., Watt, C.J., Walker, N., et al., The Growing Burden of Tuberculosis: Global Trends and Interactions with the HIV Epidemic, Arch. Int. Med., 2003, vol. 163, no. 9, pp. 1009–1021.CrossRefGoogle Scholar
  2. 2.
    Brosch, R., Gordon, S.V., Marmiesse, M., et al., A New Evolutionary Scenario for the Mycobacterium tuberculosis Complex, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 6, pp. 3684–3689.PubMedCrossRefGoogle Scholar
  3. 3.
    Arnold, C., Molecular Evolution of Mycobacterium tuberculosis, Clin. Microbiol. Infect., 2007, vol. 13, no. 2, pp. 120–128.PubMedCrossRefGoogle Scholar
  4. 4.
    Gutierrez, M.C., Brisse, S., Brosch, R., et al., Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis, PLoS Pathog., 2005, vol. 1, no. 1, p. 5.CrossRefGoogle Scholar
  5. 5.
    Shenoi, S. and Friedland, G., Extensively Drug-Resistant Tuberculosis: A New Face to an Old Pathogen, Annu. Rev. Med., 2009, vol. 60, pp. 307–320.PubMedCrossRefGoogle Scholar
  6. 6.
    Victor, T.C., van Helden, P.D., and Warren, R., Prediction of Drug Resistance in Mycobacterium tuberculosis: Molecular Mechanisms, Tools, and Applications, IUBMB Life, 2002, vol. 53, nos. 4–5, pp. 231–237.PubMedCrossRefGoogle Scholar
  7. 7.
    Beck-Sague, C., Dooley, S.W., Hutton, M.D., et al., Hospital Outbreak of Multidrug-Resistant Mycobacterium tuberculosis Infections: Factors in Transmission to Staff and HIV-Infected Patients, JAMA, 1992, vol. 268, no. 10, pp. 1280–1286.PubMedCrossRefGoogle Scholar
  8. 8.
    Edlin, B.R., Tokars, J.I., Grieco, M.H., et al., An Outbreak of Multidrug-Resistant Tuberculosis among Hospitalized Patients with the Acquired Immunodeficiency Syndrome, New Eng. J. Med., 1992, vol. 326, no. 23, pp. 1514–1521.PubMedCrossRefGoogle Scholar
  9. 9.
    Plikaytis, B.B., Marden, J.L., Crawford, J.T., et al., Multiplex PCR Assay Specific for the Multidrug-Resistant Strain W of Mycobacterium tuberculosis, J. Clin. Microbiol., 1994, vol. 32, no. 6, pp. 1542–1546.PubMedGoogle Scholar
  10. 10.
    Pym, A., Cole, S., Mechanisms of Drug Resistance in Mycobacterium tuberculosis, Bacterial Resistance to Antimicrobials, Wax, R., Taber, H., Salyers, A., and Lewis, K., Eds., CRC Press, 2008, pp. 313–342.Google Scholar
  11. 11.
    Sotgiu, G., Ferrara, G., Matteelli, A., et al., Epidemiology and Clinical Management of XDR-TB: A Systematic Review by TBNET, Eur. Respir. J., 2009, vol. 33, no. 4, pp. 871–881.PubMedCrossRefGoogle Scholar
  12. 12.
    Toungoussova, O.S., Nizovtseva, N., Mariandyshev, A., et al., Impact of Drug-Resistant Mycobacterium tuberculosis on Treatment Outcome of Culture-Positive Cases of Tuberculosis in the Archangel Oblast, Russia, in 1999, Eur. J. Clin. Microbiol. Infect. Dis., 2004, vol. 23, no. 3, pp. 174–179.PubMedCrossRefGoogle Scholar
  13. 13.
    Cox, H.S., Orozco, J.D., Male, R., et al., Multidrug-Resistant Tuberculosis in Central Asia, Emerg. Infect. Dis., 2004, vol. 10, no. 5, pp. 865–872.PubMedGoogle Scholar
  14. 14.
    Ellner, J.J., The Emergence of Extensively Drug-Resistant Tuberculosis: A Global Health Crisis Requiring New Interventions: I. The Origins and Nature of the Problem, Clin. Transl. Sci., 2008, vol. 1, no. 3, pp. 249–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Zignol, M., Hosseini, M.S., Wright, A., et al., Global Incidence of Multidrug-Resistant Tuberculosis, J. Infect. Dis., 2006, vol. 194, no. 4, pp. 479–485.PubMedCrossRefGoogle Scholar
  16. 16.
    Multidrug and Extensively Drug-Resistant TB (M/XDR-TB): 2010 Global Report on Surveillance and Response, Genewa: World Health Organization, 2010.Google Scholar
  17. 17.
    Vasil’ev, A.V., Current Tuberculosis Problems in the North-West of Russia, Problemy Tuberkuleza, 1999, no. 3, pp. 5–7.Google Scholar
  18. 18.
    Chiang, C.Y., Centis, R., and Migliori, G.B., Drug-Resistant Tuberculosis: Past, Present, Future, Respirology, 2010, vol. 15, no. 3, pp. 413–432.PubMedCrossRefGoogle Scholar
  19. 19.
    Erokhin, V., Overview and MDR-TB Research Activities, in Recent Opportunities in TB Drug Discovery and Diagnostics, (Proc. Joint NIAID-ISTC Workshop), Moscow, 2010, p. 21.Google Scholar
  20. 20.
    Comas, I. and Gagneux, S., The Past and Future of Tuberculosis Research, PLoS Pathog., 2009, vol. 5, no. 10, pp. 1–7.CrossRefGoogle Scholar
  21. 21.
    Leimane, V., Riekstina, V., Holtz, T.H., et al., Clinical Outcome of Individualised Treatment of Multidrug-Resistant Tuberculosis in Latvia: A Retrospective Cohort Study, Lancet, 2005, vol. 365, no. 9456, pp. 318–326.PubMedGoogle Scholar
  22. 22.
    Nathanson, E., Lambregts-van Weezenbeek, C., Rich, M.L., et al., Multidrug-Resistant Tuberculosis Management in Resource-Limited Settings, Emerg. Infect. Dis., 2006, vol. 12, no. 9, pp. 1389–1397.PubMedCrossRefGoogle Scholar
  23. 23.
    Holtz, T.H. and Cegielski, J.P., Origin of the Term XDR-TB, Eur. Respir. J., 2007, vol. 30, no. 2, p. 396.PubMedCrossRefGoogle Scholar
  24. 24.
    Gandhi, N.R., Moll, A., Sturm, A.W., et al., Extensively Drug-Resistant Tuberculosis as a Cause of Death in Patients Co-Infected with Tuberculosis and HIV in a Rural Area of South Africa, Lancet, 2006, vol. 368, no. 9547, pp. 1575–1580.PubMedCrossRefGoogle Scholar
  25. 25.
    Koenig, R., Drug-Resistant Tuberculosis in South Africa, XDR TB and HIV Prove a Deadly Combination, Science, 2008, vol. 319, no. 5865, pp. 894–897.CrossRefGoogle Scholar
  26. 26.
    Shah, N.S., Wright, A., Bai, G.H., et al., Worldwide Emergence of Extensively Drug-Resistant Tuberculosis, Emerg. Infect. Dis., 2007, vol. 13, no. 3, pp. 380–387.PubMedCrossRefGoogle Scholar
  27. 27.
    Kim, D.H., Kim, H.J., Park, S.K., et al., Treatment Outcomes and Long-Term Survival in Patients with Extensively Drug-Resistant Tuberculosis, Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 10, pp. 1075–1082.PubMedCrossRefGoogle Scholar
  28. 28.
    Migliori, G.B., Lange, C., Centis, R., et al., Resistance to Second-Line Injectables and Treatment Outcomes in MDR and XDR Tuberculosis Cases, Eur. Respir. J., 2008, vol. 31, no. 6, pp. 1155–1159.PubMedCrossRefGoogle Scholar
  29. 29.
    Keshavjee, S., Gelmanova, I.Y., Farmer, P.E., et al., Treatment of Extensively Drug-Resistant Tuberculosis in Tomsk, Russia: A Retrospective Cohort Study, Lancet, 2008, vol. 372, no. 9647, pp. 1403–1409.PubMedCrossRefGoogle Scholar
  30. 30.
    Jain, A. and Mondal, R., Extensively Drug-Resistant Tuberculosis: Current Challenges and Threats, FEMS Immunol. Med. Microbiol., 2008, vol. 53, no. 2, pp. 145–150.PubMedCrossRefGoogle Scholar
  31. 31.
    Dye, C., Doomsday Postponed? Preventing and Reversing Epidemics of Drug-Resistant Tuberculosis, Nat. Rev. Microbiol., 2009, vol. 7, no. 1, pp. 81–87.PubMedCrossRefGoogle Scholar
  32. 32.
    Hugonnet, J.E., Tremblay, L.W., Boshoff, H.I., et al., Meropenem-Clavulanate Is Effective against Extensively Drug-Resistant Mycobacterium tuberculosis, Science, 2009, vol. 323, no. 5918, pp. 1215–1218.PubMedCrossRefGoogle Scholar
  33. 33.
    Wright, G.D., The Antibiotic Resistome: The Nexus of Chemical and Genetic Diversity, Nat. Rev. Microbiol., 2007, vol. 5, no. 3, pp. 175–186.PubMedCrossRefGoogle Scholar
  34. 34.
    Jarlier, V. and Nikaido, H., Mycobacterial Cell Walls: Structure and Role in Natural Resistance to Antibiotics, FEMS Microbiol. Lett., 1994, vol. 123, nos. 1–2, pp. 11–18.PubMedCrossRefGoogle Scholar
  35. 35.
    De Rossi, E., Ansa, J.A., and Riccardi, G., Role of Mycobacterial Efflux Transporters in Drug Resistance: An Unresolved Question, FEMS Microbiol. Rev.,, vol. 30, no. 1, pp. 36–52.Google Scholar
  36. 36.
    D’Costa, V.M., McGrann, K.M., Hughes, D.W., and Wright, G.D., Sampling the Antibiotic Resistome, Science, 2006, vol. 311, no. 5759, pp. 374–377.PubMedCrossRefGoogle Scholar
  37. 37.
    MacLean, R.C., Hall, A.R., Perron, G.G., and Buckling, A., The Population Genetics of Antibiotic Resistance: Integrating Molecular Mechanisms and Treatment Contexts, Nat. Rev. Genet., 2010, vol. 11, no. 6, pp. 405–414.PubMedCrossRefGoogle Scholar
  38. 38.
    Nikaido, H. and Normark, S., Sensitivity of Escherichia coli to Various Beta-Lactams Is Determined by the Interplay of Outer Membrane Permeability and Degradation by Periplasmic Beta-Lactamases: A Quantitative Predictive Treatment, Mol. Microbiol., 1987, vol. 1, no. 1, pp. 29–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Parrish, N.M., Dick, J.D., and Bishai, W.R., Mechanisms of Latency in Mycobacterium tuberculosis, Trends Microbiol., 1998, vol. 6, no. 3, pp. 107–112.PubMedCrossRefGoogle Scholar
  40. 40.
    Shleeva, M.O., Salina, E.G., and Kaprel’yants, A.S., Latent Form of the Tubercle Bacillus, Mikrobiologiya, 2010, vol. 79, no. 1, pp. 3–15.Google Scholar
  41. 41.
    Prozorov, A.A. and Danilenko, V.N., “Toxin-Antitoxin” Systems in Bacterium: An Apoptosis Instrument or a Metabolism Regulator?, Mikrobiologiya, 2010, vol. 79, no. 2, pp. 147–159.Google Scholar
  42. 42.
    Prozorov, A.A. and Danilenko, V.N., Mycobacteria of the Tuberculosis Complex: Genomics, Molecular Epidemiology, and Evolution Paths, Usp. Sovrem. Biol., 2011, vol. 130, no. 3, pp. 210–221.Google Scholar
  43. 43.
    Canetti, G.J., Changes in Tuberculosis as Seen by a Pathologist, Am. Rev. Tuberc., 1959, vol. 79, no. 5, pp. 684–686.PubMedGoogle Scholar
  44. 44.
    Zhang, Y. and Yew, W.W., Mechanisms of Drug Resistance in Mycobacterium tuberculosis, Int. J. Tuberc. Lung. Dis., 2009, vol. 13, no. 11, pp. 1320–1330.PubMedGoogle Scholar
  45. 45.
    Sandgren, A., Strong, M., Muthukrishnan, P., et al., Tuberculosis Drug Resistance Mutation Database, PLoS Med., 2009, vol. 6, no. 2, pp. 0132–0136.CrossRefGoogle Scholar
  46. 46.
    Musser, J.M., Antimicrobial Agent Resistance in Mycobacteria: Molecular Genetic Insights, Clin. Microbiol. Rev., 1995, no. 4, pp. 496–514.Google Scholar
  47. 47.
    Drobniewski, F.A. and Wilson, S.M., The Rapid Diagnosis and Rifampicin Resistance in Mycobacterium tuberculosis a Molecular Story, J. Med. Microbiol., 1998, vol. 47, no. 3, pp. 189–196.PubMedCrossRefGoogle Scholar
  48. 48.
    Mani, C., Selvakumar, N., Narayanan, S., and Narayanan, P.R., Mutations in the rpoB Gene of Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates from India, J. Clin. Microbiol., 2001, vol. 39, no. 8, pp. 2987–2990.PubMedCrossRefGoogle Scholar
  49. 49.
    Hazbon, M.H. and Brimacombe, M., Bobadilla del Valle, M., et al., Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2006, vol. 50, no. 8, pp. 2640–2649.PubMedCrossRefGoogle Scholar
  50. 50.
    Bakonyte, D., Baranauskaite, A., Cicenaite, J., et al., Molecular Characterization of Isoniazid-Resistant Mycobacterium tuberculosis Clinical Isolates in Lithuania, Antimicrob. Agents Chemother., 2003, vol. 47, no. 6, pp. 2009–2011.PubMedCrossRefGoogle Scholar
  51. 51.
    Ng, V.H., Cox, J.S., Sousa, A.O., et al., Role of KatG Catalase-Peroxidase in Mycobacterial Pathogenesis: Countering the Phagocyte Oxidative Burst, Mol. Microbiol., 2004, vol. 52, no. 5, pp. 1291–1302.PubMedCrossRefGoogle Scholar
  52. 52.
    Sherman, D.R., Mdluli, K., Hickey, M.J., et al., Compensatory ahpC Gene Expression in Isoniazid Resistant Mycobacterium tuberculosis, Science, 1996, vol. 272, no. 5268, pp. 1641–1643.PubMedCrossRefGoogle Scholar
  53. 53.
    Saint-Joanis, B., Souchon, H., Wilming, M., et al., Use of Site-Directed Mutagenesis to Probe the Structure, Function and Isoniazid Activation on the Catalase/Peroxidase, KatG, from M. tuberculosis, Biochem. J., 1999, vol. 338, no. 3, pp. 753–760.PubMedCrossRefGoogle Scholar
  54. 54.
    Pym, A.S., Domenech, P., Honor, N., et al., Regulation of Catalase-Peroxidase (KatG) Expression, Isoniazid Sensitivity and Virulence by furA of Mycobacterium tuberculosis, Mol. Microbiol., 2001, vol. 40, no. 4, pp. 879–889.PubMedCrossRefGoogle Scholar
  55. 55.
    Telenti, A., Philipp, W.J., Sreevatsan, S., et al., The emb Operon, a Gene Cluster of Mycobacterium tuberculosis Involved in Resistance to Ethambutol, Nat. Med., 1997, vol. 3, no. 5, pp. 567–570.PubMedCrossRefGoogle Scholar
  56. 56.
    Hazbon, M.H., Bobadilla del Valle, M., Guerrero, M.I., et al., Role of embB Codon 306 Mutations in Mycobacterium tuberculosis Revisited: A Novel Association with Broad Drug Resistance and IS6110 Clustering rather than Ethambutol Resistance, Antimicrob. Agents Chemother., 2005, vol. 49, no. 9, pp. 3794–3802.PubMedCrossRefGoogle Scholar
  57. 57.
    Safi, H., Sayers, B., Hazbon, M.H., et al., Transfer of embB 306 Mutations into Clinical Mycobacterium tuberculosis Alters Susceptibility to Ethambutol, Isoniazid and Rifampin, Antimicrob. Agents Chemother., 2008, vol. 52, no. 6, pp. 2027–2034.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang, Y. and Mitchison, D., The Curious Characteristics of Pyrazinamide: A Review, Int. J. Tuberc. Lung Dis., 2003, vol. 7, no. 1, pp. 6–21.PubMedGoogle Scholar
  59. 59.
    Zhang, Y., Scorpio, A., Nikaido, H., and Sun, Z., Role of Acid pH and Deficient Efflux of Pyrazinoic Acid in the Unique Susceptibility of Mycobacterium tuberculosis to Pyrazinamide, J. Bacteriol., 1999, vol. 181, no. 7, pp. 2044–2049.PubMedGoogle Scholar
  60. 60.
    Scorpio, A. and Zhang, Y., Mutations in pncA, a Gene Encoding Pyrazinamidase/Nicotinamidase, Cause Resistance to the Antituberculous Drug Pyrazinamide in the Tubercle Bacillus, Nat. Med., 1996, vol. 2, no. 6, pp. 662–667.PubMedCrossRefGoogle Scholar
  61. 61.
    Honor, N. and Cole, S.T., Streptomycin Resistance in Mycobacteria, Antimicrob. Agents Chemother., 1994, vol. 38, no. 2, pp. 238–242.Google Scholar
  62. 62.
    Finken, M., Kirschner, P., Meier, A., et al., Molecular Basis of Streptomycin-Resistance in Mycobacterium tuberculosis: Alteration of the Ribosomal Protein S12 Gene and Point Mutations within a Functional 16S rRNA Pseudoknot, Mol. Microbiol., 1993, vol. 9, no. 6, pp. 1239–1246.PubMedCrossRefGoogle Scholar
  63. 63.
    Honor, N., Marchal, G., and Cole, S.T., Novel Mutation in 16S rRNA Associated with Streptomycin Dependence in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 1995, vol. 39, no. 3, pp. 769–770.Google Scholar
  64. 64.
    Okamoto, S., Tamaru, A., Nakajima, C., et al., Loss of a Conserved 7-Methylguanosine Modification in 16S rRNA Confers Low-Level Streptomycin Resistance in Bacteria, Mol. Microbiol., 2007, vol. 63, no. 4, pp. 1096–1106.PubMedCrossRefGoogle Scholar
  65. 65.
    Spies, F.S., Silva, P.E., Ribeiro, M.O., et al., Identification of Mutations Related to Streptomycin Resistance in Clinical Isolates of Mycobacterium tuberculosis and Possible Involvement of Efflux Mechanism, Antimicrob. Agents Chemother., 2008, vol. 52, no. 8, pp. 2947–2949.PubMedCrossRefGoogle Scholar
  66. 66.
    Alangaden, G., Kreiswirth, B., Aouad, A., et al., Mechanism of Resistance to Amikacin and Kanamycin in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., vol. 42, no. 5, pp. 1295–1297.Google Scholar
  67. 67.
    Suzuki, Y., Katsukawa, C., Tamaru, A., et al., Detection of Kanamycin-Resistant Mycobacterium tuberculosis by Identifying Mutations in the 16S rRNA Gene, J. Clin. Microbiol., 1998, vol. 36, no. 5, pp. 1220–1225.PubMedGoogle Scholar
  68. 68.
    Maus, C.E., Plikaytis, B.B., and Shinnick, T.M., Mutation of tlyA Confers Capreomycin Resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2005, vol. 49, no. 2, pp. 571–577.PubMedCrossRefGoogle Scholar
  69. 69.
    Johansen, S.K., Maus, C.E., Plikaytis, B.B., and Douthwaite, S., Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs, Mol. Cell,, vol. 23, no. 2, pp. 173–182.Google Scholar
  70. 70.
    Maus, C.E., Plikaytis, B.B., and Shinnick, T.M., Molecular Analysis of Cross-Resistance to Capreomycin, Kanamycin, Amikacin, and Viomycin in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2005, vol. 49, no. 8, pp. 3192–3197.PubMedCrossRefGoogle Scholar
  71. 71.
    Cheng, A.F., Yew, W.W., Chan, E.W., et al., Multiplex PCR Amplimer Conformation Analysis for Rapid Detection of gyrA Mutations in Fluoroquinolone-Resistant Mycobacterium tuberculosis Clinical Isolates, Antimicrob. Agents Chemother., 2004, vol. 48, no. 2, pp. 596–601.PubMedCrossRefGoogle Scholar
  72. 72.
    Chang, K.C., Yew, W.W., and Chan, R.C., Rapid Assays for Fluoroquinolone Resistance in Mycobacterium tuberculosis: A Systematic Review and Meta-Analysis, J. Antimicrob. Chemother., 2010, vol. 65, no. 8, pp. 1551–1561.PubMedCrossRefGoogle Scholar
  73. 73.
    Takiff, H.E., Salazar, L., Guerrero, C., et al., Cloning and Nucleotide Sequence of Mycobacterium tuberculosis gyrA and gyrB Genes and Detection of Quinolone Resistance Mutations, Antimicrob. Agents Chemother., 1994, vol. 38, no. 4, pp. 773–780.PubMedGoogle Scholar
  74. 74.
    Zhou, J., Dong, Y., Zhao, X., et al., Selection of Antibiotic Resistance: Allelic Diversity among Fluoroquinolone-Resistant Mutations, J. Infect. Dis., 2000, vol. 182, no. 2, pp. 517–525.PubMedCrossRefGoogle Scholar
  75. 75.
    Kocagz, T., Hackbarth, C.J., Unsal, I., et al., Gyrase Mutations in Laboratory-Selected, Fluoroquinolone-Resistant Mutants of Mycobacterium tuberculosis H37Ra, Antimicrob. Agents Chemother., 1996, vol. 40, no. 8, pp. 1768–1774.Google Scholar
  76. 76.
    Alangaden, G.J., Manavathu, E.K., Vakulenko, S.B., et al., Characterization of Fluoroquinolone-Resistant Mutant Strains of Mycobacterium tuberculosis Selected in the Laboratory and Isolated from Patients, Antimicrob. Agents Chemother., 1995, vol. 39, no. 8, pp. 1700–1703.PubMedGoogle Scholar
  77. 77.
    Pasca, M.R., Guglierame, P., Arcesi, F., et al., Rv2686c-Rv2687c-Rv2688c, an ABC Fluoroquinolone Efflux Pump in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2004, vol. 48, no. 8, pp. 3175–3178.PubMedCrossRefGoogle Scholar
  78. 78.
    Hegde, S.S., Vetting, M.W., Roderick, S.L., et al., A Fluoroquinolone Resistance Protein from Mycobacterium tuberculosis That Mimics DNA, Science, 2005, vol. 308, no. 5727, pp. 1480–1483.PubMedCrossRefGoogle Scholar
  79. 79.
    DeBarber, A.E., Mdluli, K., Bosman, M., et al., Ethionamide Activation and Sensitivity in Multidrug-Resistant Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no. 17, pp. 9677–9682.PubMedCrossRefGoogle Scholar
  80. 80.
    Baulard, A.R., Betts, J.C., Engohang-Ndong, J., et al., Activation of the Pro-Drug Ethionamide Is Regulated in Mycobacteria, J. Biol. Chem., 2000, vol. 275, no. 36, pp. 28326–28331.PubMedGoogle Scholar
  81. 81.
    Vannelli, T.A. and Dykman, A., and Ortiz de Montellano, P.R., The Antituberculosis Drug Ethionamide Is Activated by a Flavoprotein Monooxygenase, J. Biol. Chem., 2002, vol. 277, no. 15, pp. 12824–12829.PubMedCrossRefGoogle Scholar
  82. 82.
    Banerjee, A., Dubnau, E., Qumard, A., et al., InhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science, 1994, vol. 263, no. 5144, pp. 227–230.PubMedCrossRefGoogle Scholar
  83. 83.
    Ramon-Garcia, S., Martin, C., Thompson, C.J., and Ainsa, J.A., The Role of the Mycobacterium tuberculosis P55 Efflux Pump in Intrinsic Drug Resistance, Oxidative Stress Responses and Growth, Antimicrob. Agents Chemother., 2009, vol. 53, no. 9, pp. 3675–3682.PubMedCrossRefGoogle Scholar
  84. 84.
    Morris, R.P., Nguyen, L., Gatfield, J., et al., Ancestral Antibiotic Resistance in Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 34, pp. 12200–12205.PubMedCrossRefGoogle Scholar
  85. 85.
    Nguyen, L. and Thompson, C.J., Foundations of Antibiotic Resistance in Bacterial Physiology-the Mycobacterial Paradigm, Trends Microbiol., 2006, vol. 14, no. 7, pp. 304–312.PubMedCrossRefGoogle Scholar
  86. 86.
    Bekker, O.B., Elizarov, S.M., Alekseeva, M.G., et al., Ca2+-Dependent Modulation of Antibiotic Resistance in Streptomyces lividans 66 and Streptomyces coelicolor A3(2), Mikrobiologiya, 2008, vol. 77, no. 5, pp. 630–638.Google Scholar
  87. 87.
    Wallis, R.S., Patil, S., Cheon, S.H., et al., Drug Tolerance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 1999, vol. 43, no. 11, pp. 2600–2606.PubMedGoogle Scholar
  88. 88.
    Alland, D., Steyn, A.J., Weisbrod, T., et al., Characterization of a Mycobacterium tuberculosis iniBAC Promoter, a Promoter That Responds to Cell Wall Biosynthesis Inhibition, J. Bacteriol., 2000, vol. 182, no. 7, pp. 1802–1811.PubMedCrossRefGoogle Scholar
  89. 89.
    Colangeli, R., Helb, D., Sridharan, S., et al., Transcriptional Regulation of Multi-Drug Tolerance and Antibiotic-Induced Responses by the Histone-Like Protein Lsr2 in M. tuberculosis, Mol. Microbiol., 2005, vol. 55, no. 6, pp. 1829–1840.PubMedCrossRefGoogle Scholar
  90. 90.
    Colangeli, R., Helb, D., Vilcheze, C., et al., The Mycobacterium tuberculosis iniA Gene Is Essential for Activity of an Efflux Pump That Confers Drug Tolerance to Both Isoniazid and Ethambutol, PLoS Pathog., 2007, vol. 3, no. 6, pp. 0780–0792.CrossRefGoogle Scholar
  91. 91.
    Siddiqi, N., Das, R., Pathak, N., et al., Mycobacterium tuberculosis Isolate with a Distinct Genomic Identity Overexpresses a Tap-Like Efflux Pump, Infection, 2004, vol. 32, no. 2, pp. 109–111.PubMedCrossRefGoogle Scholar
  92. 92.
    Boshoff, H.I., Myers, T.G., Copp, B.R., et al., The Transcriptional Responses of Mycobacterium tuberculosis to Inhibitors of Metabolism: Novel Insights in Drug Mechanisms of Action, J. Biol. Chem., 2004, vol. 279, no. 8, pp. 40174–40184.PubMedCrossRefGoogle Scholar
  93. 93.
    Pandey, D.P. and Gerdes, K., Toxin-Antitoxin Loci Are Highly Abundant in Free-Living but Lost from Host-Associated Prokaryotes, Nucleic Acids Res., 2005, vol. 33, no. 3, pp. 966–976.PubMedCrossRefGoogle Scholar
  94. 94.
    Van Melderen, L., Saavedra, De., and Bast, M., Bacterial Toxin-Antitoxin Systems: More Than Selfish Entities?, PLoS Genet., 2009, vol. 5, no. 3, pp. 1–6.Google Scholar
  95. 95.
    Buts, L., Lah, J., Dao-Thi, M., et al., Toxin-Antitoxin Modules as Bacterial Metabolic Stress Managers, Trends Biochem. Sci., 2005, vol. 30, no. 12, pp. 672–679.PubMedCrossRefGoogle Scholar
  96. 96.
    Ramage, H.R., Connolly, L.E., and Cox, J., Comprehensive Functional Analysis of Mycobacterium tuberculosis Toxin-Antitoxin Systems: Implications for Pathogenesis, Stress Responses, and Evoluties, PLoS Genet., 2009, vol. 5, no. 12, pp. 1–14.CrossRefGoogle Scholar
  97. 97.
    Korch, S.B., Contreras, H., and Clark-Curtiss, J.E., Three Mycobacterium tuberculosis Rel Toxin-Antitoxin Modules Inhibit Mycobacterial Growth and Are Expressed in Infected Human Macrophages, J. Bacteriol., 2009, vol. 191, no. 5, pp. 1618–1630.PubMedCrossRefGoogle Scholar
  98. 98.
    Huang, F. and He, Z.G., Characterization of an Interplay between a Mycobacterium tuberculosis MazF Homolog, Rv1495 and Its Sole DNA Topoisomerase, Nucleic Acids Res., 2010, vol. 38, no. 22, pp. 8219–8230.PubMedCrossRefGoogle Scholar
  99. 99.
    Yang, M., Gao, C., Wang, Y., et al., Characterization of the Interaction and Cross-Regulation of Three Mycobacterium tuberculosis RelBE Modules, PLoS One, 2010, vol. 5, no. 5, pp. 1–12.Google Scholar
  100. 100.
    Miallau, L., Faller, M., Chiang, J., et al., Structure and Proposed Activity of a Member of the VapBC Family of Toxin-Antitoxin Systems VapBC-5 from Mycobacterium tuberculosis, J. Biol. Chem., 2009, vol. 284, no. 1, pp. 276–283.PubMedCrossRefGoogle Scholar
  101. 101.
    Ellner, J.J., The Emergence of Extensively Drug-Resistant Tuberculosis: A Global Health Crisis Requiring New Interventions: II. Scientific Advances That May Provide Solutions, Clin. Transl. Sci., 2009, vol. 2, no. 1, pp. 80–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Werngren, J. and Hoffner, S.E., Deciphering an Outbreak of Drug-Resistant Mycobacterium tuberculosis, J. Clin. Microbiol., 2003, vol. 41, no. 4, pp. 1520–1524.PubMedCrossRefGoogle Scholar
  103. 103.
    The New Profile of Drug-Resistant Tuberculosis in Russia: A Global and Local Perspective, (Summary Joint Workshop), Washington, DC: Natl. Acad. Press, 2011.Google Scholar
  104. 104.
    Koul, A., Arnoult, E., Lounis, N., et al., The Challenge of New Drug Discovery for Tuberculosis, Nature, 2011, vol. 469, no. 7331, pp. 483–490.PubMedCrossRefGoogle Scholar
  105. 105.
    Ma, Z., Lienhardt, C., McIlleron, H., et al., Global Tuberculosis Drug Development Pipeline: The Need and the Reality, Lancet, 2010, vol. 375, no. 9731, pp. 2100–2109.PubMedCrossRefGoogle Scholar
  106. 106.
    Tomioka, H., Prospects for the Development of New Antituberculous Drugs Putting Our Hopes on New Drug Targets, Kekkaku, 2010, vol. 85, no. 11, pp. 815–822.PubMedGoogle Scholar
  107. 107.
    Shi, R. and Sugawara, I., Development of New Anti-Tuberculosis Drug Candidates, Tohoku J. Exp. Med., 2010, vol. 221, no. 2, pp. 97–106.PubMedCrossRefGoogle Scholar
  108. 108.
    Danilenko, V.N., Osolodkin, D.I., Lakatosh, S.A., et al., Bacterial Eukaryotic Type Serine-Threonine Protein Kinases: Tools for Targeted Anti-Infective Drug Design, Curr. Top. Med. Chem., 2011, vol. 11, no. 11. pp. 1352–1369.PubMedCrossRefGoogle Scholar
  109. 109.
    Kurosu, M. and Begari, E., Bacterial Protein Kinase Inhibitors, Molecules, 2010, vol. 15, no. 3, pp. 1531–1553.PubMedCrossRefGoogle Scholar
  110. 110.
    Miller, J.R., Dunham, S., Mochalkin, I., et al., A Class of Selective Antibacterials Derived from a Protein Kinase Inhibitor Pharmacophore, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 6, pp. 1737–1742.PubMedCrossRefGoogle Scholar
  111. 111.
    Prozorov, A.A. and Danilenko, V.N., Allolysis Phenomenon in Bacteria, Mikrobiologiya, 2011, vol. 80, no. 1, pp. 1–9.Google Scholar
  112. 112.
    Bekker, O.B., Mavletova, D.A., Lyubimova, I.K., et al., Secondary Lysis Induction of Cultures of Streptomyces lividans by Inhibitors of Eukaryotic Type Serine-Threonine Protein Kinases, Mikrobiologiya, 2012 (in press).Google Scholar
  113. 113.
    Ishmetova, R.I., Rusinov, G.L., Kravchenko, M.A., et al., Antituberculous and Radioprotector Activity of Some 2,5-Substituted Tetrazoles, Pharm. Chem. J., 2000, vol. 34, no. 8, pp. 23–24.CrossRefGoogle Scholar
  114. 114.
    Rusinov, G.L., Latosh, N.I., Ishmetova, R.I., et al., Synthesis and Tuberculostatic Activity of Some Substituted Amino Acid Methyl Esters with Sym-Tetrazine Moietie, Pharm. Chem. J., 2005, vol. 39, no. 1, pp. 10–12.CrossRefGoogle Scholar
  115. 115.
    Ginsberg, A.M., Laurenzi, M.W., Rouse, D.J., et al., Safety, Tolerability, and Pharmacokinetics of PA-824 in Healthy Subjects, Antimicrob. Agents Chemother., 2009, vol. 53, no. 9, pp. 3720–3725.PubMedCrossRefGoogle Scholar
  116. 116.
    Matsumoto, M., Hashizume, H., Tomishige, T., et al., OPC-67683, a Nitro-Dihydro-Imidazooxazole Derivative with Promising Action against Tuberculosis in vitro and in Mice, PLoS Med., 2006, vol. 3, pp. 2131–2144.CrossRefGoogle Scholar
  117. 117.
    Arjon, A. and Castaner, R., TMC-207 (R-207910) Is a Novel Diarylquinoline with a Unique Biological Target: The F0 Subunit of Mycobacterial ATP Synthase, Drugs Fut., 2008, vol. 33, no. 12, p. 1018.CrossRefGoogle Scholar
  118. 118.
    Jia, L., Tomaszewski, J.E., Hanrahan, C., et al., Pharmacodynamics and Pharmacokinetics of SQ109, a New Diamine-Based Antitubercular Drug, Br. J. Pharmacol., 2009, vol. 144, pp. 80–87.CrossRefGoogle Scholar
  119. 119.
    Arora, S., Eradication of Mycobacterium tuberculosis Infection in 2 Months with LL-3858: A Preclinical Study, Int. J. Tuberc. Lung Dis., 2004, vol. 8, p. 29.Google Scholar
  120. 120.
    Alcala, L., Ruiz-Serrano, M.J., Perez-Fernandez, C., et al., In vitro Activities of Linezolid against Clinical Isolates of Mycobacterium tuberculosis That Are Susceptible or Resistant to First-Line Antituberculous Drugs, Antimicrob. Agents Chemother., 2003, vol. 47, no. 1, pp. 416–417.PubMedCrossRefGoogle Scholar
  121. 121.
    Makarov, V., Manina, G., Mikusova, K., et al., Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis, Science, 2009, vol. 324, no. 5928, pp. 801–804.PubMedCrossRefGoogle Scholar
  122. 122.
    Charushin, V.N., Tolshchina, S.G., Rusinov, G.L., et al. Russian Inventor’s Certificate no. 2007551348, 2011 (unpublished).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Prozorov
    • 1
  • M. V. Zaichikova
    • 1
  • V. N. Danilenko
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations