Advertisement

Russian Journal of Genetics

, 47:1096 | Cite as

Comparative FISH analysis of C-positive regions of chromosomes of wood mice (Rodentia, Muridae, Sylvaemus)

  • N. B. Rubtsov
  • T. V. Karamysheva
  • A. S. Bogdanov
  • T. V. Likhoshvay
  • I. V. Kartavtseva
Animal Genetics

Abstract

The homology of DNA of C-positive centromeric regions of chromosomes in wood mice of the genus Sylvaemus (S. uralensis, S. fulvipectus, S. sylvaticus, S. flavicollis, and S. ponticus) was estimated for the first time. DNA probes were generated by microdissection from the centromeric regions of individual autosomes of each species, and their fluorescence in situ hybridization (FISH) with metaphase chromosomes of representatives of all studied wood mouse species was carried out. Unlike in the chromosomal forms and races of S. uralensis, changes in the DNA composition of the chromosomal centromeric regions in the wood mouse species of the genus Sylvaemus (including closely related S. flavicollis and S. ponticus) are both quantitative and qualitative. The patterns of FISH signals after in situ hybridization of the microdissection DNA probes with chromosomes of the species involved in the study demonstrate significant differences between C-positive regions of wood mouse chromosomes in the copy number and the level of homology of repetitive sequences as well as in the localization of homologous repetitive sequences. It was shown that C-positive regions of wood mouse chromosomes can contain both homologous and distinct sets of repetitive sequences. Regions enriched with homologous repeats were detected either directly in C-positive regions of individual chromosomes or only on the short arms of acrocentrics, or at the boundary of C-positive and C-negative regions.

Keywords

Centromeric Region Wood Mouse Pygmy Wood Mouse Large Autosome Small Autosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Doolittle, W.F. and Sapienza, C., Selfish Genes, the Phenotype Paradigm and Genome Evolution, Nature, 1980, vol. 284, pp. 601–603.PubMedCrossRefGoogle Scholar
  2. 2.
    Orgel, L.E., Crick, F.H.C., and Sapienza, C., Selfish DNA, Nature, 1980, vol. 288, pp. 645–646.PubMedCrossRefGoogle Scholar
  3. 3.
    Carvalho, C., Pereira, H.M., Ferreira, J., et al., Chromosomal G-Dark Bands Determine the Spatial Organization of Centromeric Heterochromatin in the Nucleus, Mol. Biol. Cell, 2001, vol. 12, pp. 3563–3572.PubMedGoogle Scholar
  4. 4.
    Mateos-Langerak, J., Goetze, S., Leonhardt, H., et al., Nuclear Architecture: Is It Important for Genome Function and Can We Prove It?, J. Cell. Biochem., 2007, vol. 102, pp. 1067–1075.PubMedCrossRefGoogle Scholar
  5. 5.
    Karamysheva, T.V., Bogdanov, A.S., Kartavtseva, I.V., et al., Comparative FISH Analysis of C-Positive Blocks of Centromeric Chromosomal Regions of Pygmy Wood Mice, Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2010, vol. 46, no. 6, pp. 712–724.CrossRefGoogle Scholar
  6. 6.
    Engel, W., Vogel, W., Voisulescu, L., et al., Cytogenetic and Biochemical Differences between Apodemus sylvaticus and Apodemus flavicollis Possibly Responsible for the Failure to Interbreed, Comp. Biochem. Physiol., 1973, vol. 44B, pp. 1165–1173.Google Scholar
  7. 7.
    Gemmeke, H., Proteinvariation und Taxonomie in der Gattung Apodemus (Mammalia, Rodentia), Zeitschrift Saugetierkunde, 1980, vol. 45, no. 6, pp. 348–365.Google Scholar
  8. 8.
    Mezhzherin, S.V., Allozymic Variability and Genetic Divergence of Wood Mice of the Subgenus Sylvaemus (Ognev et Vorobiev), Genetika (Moscow), 1990, vol. 26, no. 6, pp. 1046–1054.Google Scholar
  9. 9.
    Mezhzherin, S.V., Revision of Mice of the Genus Apodemus (Rodentia, Muridae) of Northern Eurasia, Vestn. Zool., 1997, vol. 31, no. 4, pp. 29–41.Google Scholar
  10. 10.
    Vorontsov, N.N., Mezhzherin, S.V., Boeskorov, G.G., et al., Genetic Differentiation of Wood Mice Sibling Species (Apodemus) in the Caucasus and Their Diagnostics, Dokl. Akad. Nauk SSSR, 1989, vol. 309, no. 5, pp. 1234–1238.Google Scholar
  11. 11.
    Vorontsov, N.N., Boeskorov, G.G., Mezhzherin, S.V., et al., Systematics of Wood Mice of the Subgenus Sylvaemus in the Caucasus (Mammalia, Rodentia, Apodemus), Zool. Zh., 1992, vol. 73, no. 3, pp. 119–131.Google Scholar
  12. 12.
    Mezhzherin, S.V. and Zykov, A.E., Genetic Divergence and Allozymic Variability of Wood Mice of the Genus Apodemus sensu lato (Muridae, Rodentia), Tsitol. Genet., 1991, vol. 25, no. 4, pp. 51–59.PubMedGoogle Scholar
  13. 13.
    Filippucci, M.G., Macholán, M., and Michaux, J.R., Genetic Variation and Evolution in the Genus Apodemus (Muridae: Rodentia), Biol. J. Linn. Soc., 2002, vol. 75, no. 3, pp. 395–419.CrossRefGoogle Scholar
  14. 14.
    Michaux, J.R., Chevret, P., Filippucci, M.G., and Macholán, M., Phylogeny of the Genus Apodemus with a Special Emphasis on the Subgenus Sylvaemus Using the Nuclear IRBP Gene and the Mitochondrial Markers: Cytochrome b and 12S rRNA, Mol. Phyl. Evol., 2002, vol. 23, pp. 123–136.CrossRefGoogle Scholar
  15. 15.
    Chelomina, G.N., Lesnye i polevye myshi: molekulyarno-geneticheskie aspekty evolyutsii i sistematiki (Wood and Field Mice: Molecular Genetic Aspects of Evolution), Vladivostok: Dal’nauka, 2005.Google Scholar
  16. 16.
    Balakirev, A.E., Baskevich, M.I., Gmyl’, A.P., et al., On the Taxonomic Rank of ciscaucasicus and Its Relationships with the Pygmy Wood Mouse Sylvaemus uralensis Inferred from the mtDNA Cytochrome b Gene Sequence, Russ. J. Genet., 2007, vol. 43, no. 12, pp. 1386–1399.CrossRefGoogle Scholar
  17. 17.
    Bogdanov, A.S., Allozyme Variation of the Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae) and Estimation of the Divergence of Its Chromosome Forms, Russ. J. Genet., 2004, vol. 40, no. 8, pp. 897–909.CrossRefGoogle Scholar
  18. 18.
    Chelomina, G.N., Atopkin, D.M., and Bogdanov, A.S., Phylogenetic Relationships between Species and Intraspecific Forms of Forest Mice from the Genus Sylvaemus as Determined by Partial Sequencing of the Cytochrome b Gene of Mitochondrial DNA, Dokl. Akad. Nauk, 2007, vol. 416, no. 2, pp. 282–285.Google Scholar
  19. 19.
    Bogdanov, A.S., Bannikova, A.A., and Kramerov, D.A., Study of Differentiation and Intraspecies Phylogenetic Relations in Pygmy Wood Mouse Sylvaemus uralensis by Means of Inter-MIR-PCR Method, in Sovremennye problemy biologicheskoi evolyutsii (Modern Problems of Biological Evolution), Proc. Conf., Moscow: Izd. Gos. Darwin muzeya, 2007, pp. 162–164.Google Scholar
  20. 20.
    Mezhzherin, S.V., Boeskorov, G.G., and Vorontsov, N.N., Genetic Relations of European and Transcaucasian Mice of the Genus Apodemus Kaup, Genetika (Moscow), 1992, vol. 28, no. 11, pp. 111–121.Google Scholar
  21. 21.
    Bogdanov, A.S., Atopkin, D.M., and Chelomina, G.N., Analysis of Genetic Variation and Differentiation in the Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae) Aided by the RAPD-PCR Method, Izv. Akad. Nauk, Ser. Biol., 2009, no. 3, pp. 276–292.Google Scholar
  22. 22.
    Chelomina, G.N., Pavlenko, M.V, Kartavtseva, I.V., et al., Genetic Differentiation of Caucasian Wood Mice: Comparison of Isozymic, Chromosomal and Molecular Divergence, Russ. J. Genet., 1998, vol. 34, no. 2, pp. 151–162.Google Scholar
  23. 23.
    Bogdanov, A.S., Chromosome Differentiation of Pygmy Wood Mice Sylvaemus uralensis Populations in the Eastern Part of Species Distribution Range, Zool. Zh., 2001, vol. 80, no. 3, pp. 331–342.Google Scholar
  24. 24.
    Kartavtseva, I.V., Kariosistematika lesnykh i polevykh myshei (Rodentia, Muridae) (Karyosystematics of Wood and Field Mice (Rodentia, Muridae)), Vladivostok: Dal’nauka, 2002.Google Scholar
  25. 25.
    Michaux, J.R., Magnanou, E., Paradis, E., et al., Mitochondrial Phylogeography of the Woodmouse (Apodemus sylvaticus) in the Western Palearctic Region, Mol. Ecol., 2003, vol. 12, pp. 685–697.PubMedCrossRefGoogle Scholar
  26. 26.
    Michaux, J.R., Libois, R., and Filippucci, M.-G., So Close and so Different: Comparative Phylogeography of Two Small Mammal Species, the Yellow-Necked Fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic Region, Heredity, 2005, vol. 94, pp. 52–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Bogdanov, A.S. and Rozanov, Yu.M., Size Variability of the Nuclear Genome in Pygmy Wood Mouse Sylvaemus uralensis (Rodentia, Muridae), Russ. J. Genet., 2005, vol. 41, no. 10, pp. 1123–1129.CrossRefGoogle Scholar
  28. 28.
    Hoofer, S.R., Gaschak, S., Dunina-Barkovskaya, Y., et al., New Information for Systematics, Taxonomy, and Phylogeography of the Rodent Genus Apodemus (Sylvaemus) in Ukraine, J. Mammal., 2007, vol. 88, no. 2, pp. 330–342.CrossRefGoogle Scholar
  29. 29.
    Orlov, V.N., Kozlovsky, A.I., Nadjafova, R.S., and Bulatova, N.Sh., Karyological Diagnoses, Distribution and Evolutionary Classification of Wood Mice of the Subgenus Sylvaemus (Rodentia, Muridae, Apodemus) in Europe, Zool. Zh., 1996, vol. 75, no. 1, pp. 88–102.Google Scholar
  30. 30.
    Orlov, V.N., Bulatova, N.Sh., Nadjafova, R.S., and Kozlovsky, A.I., Evolutionary Classification of European Wood Mice of the Subgenus Sylvaemus Based on Allozyme and Chromosome Data, Bonner Zoologische Beitrage, 1996, vol. 46, nos. 1–4, pp. 191–202.Google Scholar
  31. 31.
    Wolf, U., Voiculescu, I., Zenzes, M.T., et al., Chromosome Polymorphism in Apodemus flavicollis Possibly Due to Creation of a New Centromere, in Modern Aspects of Cytogenetics: Constitutive Heterochromatin in Man, Stuttgart: F.K. Schattauer Verlag, 1973, pp. 163–168.Google Scholar
  32. 32.
    Sablina, O.V., Radzhabli, S.I., and Golenishchev, F.N., Additional Chromosomes in the Karyotype of Yellow-Necked Fieldmouse (Apodemus flavicollis) from Leningrad Oblast, Zool. Zh., 1985, vol. 64, no. 12, pp. 1901–1903.Google Scholar
  33. 33.
    Hirning, U., Schulz, W.A., Just, W., et al., A Comparative Study of the Heterochromatin of Apodemus sylvaticus and Apodemus flavicollis, Chromosoma, 1989, vol. 98, no. 6, pp. 450–455.CrossRefGoogle Scholar
  34. 34.
    Vujošević, M., Blagojević, J., Radosavljević, J., and Bejaković, D., B Chromosome Polymorphism in Populations of Apodemus flavicollis in Yugoslavia, Genetics, 1991, vol. 83, no. 2, pp. 167–170.Google Scholar
  35. 35.
    Vujosevic, M., B-Chromosome Polymorphism in Apodemus flavicollis (Rodentia, Mammalia) during Five Years, Caryologia, 1992, vol. 45, nos. 3–4, pp. 347–352.Google Scholar
  36. 36.
    Boyeskorov, G., Timm, U., and Lyapunova, E., Karyological Study of Two Apodemus Species (Rodentia, Muridae) from the Baltic Countries, Proc. 1st Baltic Theriol. Conf., Acta Commentationes Universitatis Tartuensis, 1992, vol. 955, pp. 81–87.Google Scholar
  37. 37.
    Nadjafova, R.S., Bulatova, N.Sh., Chasovlikarova, Z., and Gerassimov, S., Karyological Differences between Two Apodemus Species in Bulgaria, Zeitschrift Saeugetierkunde, 1993, vol. 58, pp. 232–239.Google Scholar
  38. 38.
    Ramalhinho, M.G. and Libois, R., First Report on the Presence in France of a B-Chromosome Polymorphism in Apodemus flavicollis, Mammalia, 2002, vol. 66, no. 2, pp. 300–303.Google Scholar
  39. 39.
    Bogdanov, A.S., Cytogenetic Study of Wood Mice (Sylvaemus, Muridae, Rodentia) of the North-Western Regions of Kopetdag, in Sistematika i filogeniya gryzunov i zaitseobraznykh, (Systematics and Phylogeny of Rodents and Lagomorphs), Moscow, 2000, pp. 24–26.Google Scholar
  40. 40.
    Nadjafova, R.S., Cytogenetic Recognition of the Common Wood Mouse, Sylvaemus sylvaticus s.l. (Mammalia: Rodentia: Muridae), in European Russia, Comp. Cytogenet., 2008, vol. 2, no. 1, pp. 1–6.Google Scholar
  41. 41.
    Ford, C.E. and Hamerton, J.L., A Colchicine, Hypotonic Citrate, Squash Sequence for Mammalian Chromosomes, Stain Technol., 1956, vol. 31, no. 6, pp. 247–251.PubMedGoogle Scholar
  42. 42.
    Human Cytogenetics: A Practical Approach, Rooney, D.E. and Czepulkowski, B.H., Eds., Oxford: Oxford Univ. Press, 1992, vol. 1, pp. 157–192.Google Scholar
  43. 43.
    Verma, R.S. and Babu, A., Human Chromosomes, Manual of Basic Technologies, New York: Pergamon, 1998, pp. 72–74.Google Scholar
  44. 44.
    Karamysheva, T.V., Matveeva, V.G., Shorina, A.R., and Rubtsov, N.B., Clinical and Molecular Cytogenetic Analysis of a Rare Case of Mosaicism for Partial Trisomy 3p and Partial Trisomy 10q in Humans, Russ. J. Genet., 2001, vol. 37, no. 6, pp. 666–670.CrossRefGoogle Scholar
  45. 45.
    Rubtsov, N., Senger, G., Kuzcera, H., et al., Interstitial Deletion of Chromosome 6q: Precise Definition of the Breakpoints by Microdissection, DNA Amplification, and Reverse Painting, Hum. Genet., 1996, vol. 97, no. 6, pp. 705–709.PubMedCrossRefGoogle Scholar
  46. 46.
    Rubtsov, N.B., Karamisheva, T.V., Astakhova, N.M., et al., Zoo-FISH with Region-Specific Paints for Mink Chromosome 5q: Delineation of Inter- and Intrachromosomal Rearrangements in Human, Pig and Fox, Cytogenet. Cell Genet., 2000, vol. 90, nos. 3–4, pp. 268–270.PubMedCrossRefGoogle Scholar
  47. 47.
    Lichter, P., Cremer, T., Borden, J., et al., Delineation of Individual Human Chromosomes in Metaphase and Interphase Cells by in situ Suppression Hybridization Using Recombinant DNA Libraries, Hum. Genet., 1988, vol. 80, no. 3, pp. 224–234.PubMedCrossRefGoogle Scholar
  48. 48.
    Karamysheva, T., Andreenkova, O., Bochkarev, M., et al., B Chromosomes of Korean Field Mouse Apodemus peninsulae (Rodentia, Mammalia) Analysed by Microdissection and FISH, Cytogenet. Genome Res., 2002, vol. 96, pp. 154–161.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubtsov, N.B., Borisov, Yu.M., Karamysheva, T.V., and Bochkarev, M.N., The Mechanisms of Formation and Evolution of B Chromosomes in Korean Field Mice Apodemus peninsulae (Mammalia, Rodentia), Russ. J. Genet., 2009, vol. 45, no. 4, pp. 389–396.CrossRefGoogle Scholar
  50. 50.
    Hughes, A.L. and Piontkivska, H., DNA Repeat Arrays in Chicken and Human Genomes and the Adaptive Evolution of Avian Genome Size, BMC Evol. Biol., 2005, vol. 5, no. 12, p. 6, http://www.biomedcen-tral.com/1471-2148/5/12).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. B. Rubtsov
    • 1
    • 2
  • T. V. Karamysheva
    • 1
  • A. S. Bogdanov
    • 3
  • T. V. Likhoshvay
    • 2
  • I. V. Kartavtseva
    • 4
  1. 1.Institute of Cytology and Genetics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Department of Cytology and GeneticsNovosibirsk State UniversityNovosibirskRussia
  3. 3.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Biology and Soil Science, Far Eastern DivisionRussian Academy of SciencesVladivostokRussia

Personalised recommendations