Russian Journal of Genetics

, 47:958

Genetic divergence and relationships among smelts of the genus Osmerus from the Russian waters

  • N. E. Kovpak
  • L. A. Skurikhina
  • A. D. Kukhlevsky
  • A. G. Oleinik
  • D. S. Sendek
Animal Genetics


Smelts of the genus Osmerus, O. eperlanus and O. mordax dentes, inhabiting the basins of the Atlantic, Arctic, and Pacific oceans were investigated using RFLP analysis of the mitochondrial DNA segments A8/A6/COIII/ND3 and ND3/ND4, and sequencing of the cytb and COI genes (mtDNA), and intron 1 of the rpS7 gene (nDNA). A total of 14 samples from the populations from most part of the Russian range were examined. The mean values of haplotype and nucleotide diversity constituted 0.5997 ± 0.11264 and 0.003201 for O. m. dentex, and 0.3086 ± 0.09892 and 0.000431 for O. eperlanus, respectively. The high level of interspecific diversity (12.94%) along with the low level of intraspercific diversity (0.049% for O. m. dentex, and 0.001% for O. eperlanus was observed. The dendrograms (UPGMA, NJ, MP, and BA) constructed using the data of RFLP analysis of mtDNA, along with the sequencing data of mitochondrial and nuclear genes were congruent. The representatives of O. eperlanus and O. m. dentex formed steady clusters in accordance with their species affiliation, albeit without subdivision into local populations depending on their geographic locality.


  1. 1.
    Klyukanov, V.A., Morphological Principles of the Smelts’ Systematics, Genus Osmerus (Osmeridae), Zool. Zh., 1969, vol. 48, no. 1, pp. 99–109.Google Scholar
  2. 2.
    Chereshnev, I.A., Annotated List of Cyclostomata and Pisces from the Fresh Water of the Arctic and Adjacent Territories, Vopr. Ikhtiol., 1996, vol. 36, no. 5, pp. 597–608.Google Scholar
  3. 3.
    Nellbring, S., The Ecology of Smelts (Genus Osmerus): A Literature Review, Nordic J. Freshwater Res., 1989, vol. 65, pp. 116–145.Google Scholar
  4. 4.
    Taylor, E.B. and Dodson, J.J., A Molecular Analysis of Relationships and Biogeography within a Species Complex of Holarctic Fish (Genus Osmerus), Mol. Ecol., 1994, vol. 3, no. 3, pp. 235–248.PubMedCrossRefGoogle Scholar
  5. 5.
    Klyukanov, V.A., Taxonomy and Phylogenetic Relationships of the Genera Osmerus and Hypomesus (Osmeridae) and Their Dispersion, Zool. Zh., 1975b, vol. 54, pp. 590–595.Google Scholar
  6. 6.
    Chapman, W.M., The Osteology and Relationships of the Osmerid Fishes, J. Morphol., 1941, vol. 69, no. 2, pp. 279–301.CrossRefGoogle Scholar
  7. 7.
    Andriyashev, A.P., Ryby severnykh morei SSSR (Fishes of the Northern Seas of the Soviet Union), Moscow: Akad. Nauk SSSR, 1954.Google Scholar
  8. 8.
    McAllister, D.E., A Revision of the Smelt Family Osmeridae, Bull. Nat. Mus. Can., 1963, no. 191, p. 53.Google Scholar
  9. 9.
    Klyukanov, V.A., Classification of Smelts (Osmeridae) with Respects to Peculiarities of Skeleton Structure in the Genus Thaleishthus, Zool. Zh., 1970, vol. 49, no. 3, pp. 399–417.Google Scholar
  10. 10.
    Klyukanov, V.A., Genesis, Dispersal, and Evolution of Osmeridae, in Osnovy klassifikatsii i filogenii lososevidnykh ryb (Priciples of Classification and Phylogeny of Salmoniformes), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1977, pp. 13–27.Google Scholar
  11. 11.
    Begle, D.P., Relationships of the Osmeroid Fishes and the Use of Reductive Characters in Phylogenetic Analysis, Syst. Zool., 1991, vol. 40, no. 1, pp. 33–53.CrossRefGoogle Scholar
  12. 12.
    Wilson, M.V.H. and Williams, R.R.G., New Paleocene Genus and Species of Smelt (Teleostei: Osmeridae) from Freshwater Deposits of the Paskapoo Formation, Alberta, Canada and Comments on Osmerid Phylogeny, J. Vert. Paleon., 1991, vol. II, no. 4, pp. 434–451.CrossRefGoogle Scholar
  13. 13.
    Johnson, G.D and Patterson, C, Relationships of Lower Euteleostean Fishes, Interrelationships of Fishes, Stiassny, M.J., Parenty, L.R., and Johnson, E.D., Eds., San-Diego: Academic, 1996, pp. 251–332.Google Scholar
  14. 14.
    Fu, C., Lu, J., Wu, J., et al., Phylogenetic Relationships of Salangid Fishes (Osmeridae, Salanginae) with Comments on Phylogenetic Placement of the Salangids Based on Mitochondrial DNA Sequences, Mol. Phylogenet. Evol., 2005, vol. 35, pp. 76–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Fedorov, V.V., Chereshnev, I.A., Nazarkin, M.V., et al., Katalog morskikh i presnovodnykh ryb severnoi chasti Okhotskogo morya (Catalog of Marine and Freshwater Fishes of the Northern Part of the Sea of Okhotsk), Vladivostok: Dalnauka, 2003.Google Scholar
  16. 16.
    Ilves, K.L. and Tailor, E.B., Molecular Resolution of the Systematics of a Problematic Group of Fishes (Teleostei: Osmeridae) and Evidence for Morphological Homoplasy, Mol. Phylogenet. Evol., 2009, vol. 50, pp. 163–178.PubMedCrossRefGoogle Scholar
  17. 17.
    Skurikhina, L.A., Oleinik, A.G., and Pan’kova, M.V., Comparative Analysis of Mitochondrial DNA Diversity in Smelts, Biol. Morya (Vladivostok), 2004, vol. 30, no. 4, pp. 289–295.Google Scholar
  18. 18.
    Skurikhina, L.A., Kukhlevskii, A.D., Oleinik, A.G., and Kovpak, N.E., Phylogenetic Analysis of Smelts (Osmeridae) Based on the Variation of Cytochrome b Gene, Russ. J. Genet., 2010, vol. 46, no. 1, pp. 69–80.CrossRefGoogle Scholar
  19. 19.
    Waters, J.M., Lopez, J.A., and Wallis, G.P., Molecular Phylogenetics and Biogeography of Galaxiid Fishes (Osteichthyes: Galaxiidae): Dispersal, Vicariance, and the Position of Lepidogalaxias salamandroides, Syst. Biol., 2000, vol. 49, no. 4, pp. 777–795.PubMedCrossRefGoogle Scholar
  20. 20.
    Waters, J.M., Saruwatari, T., Kobayashi, T., et al., Phylogenetic Placement of Retropinnid Fishes: Data Set Incongruence Can Be Reduced by Using Asymmetric Character State Transformation Costs, Syst. Biol., 2002, vol. 51, no. 3, pp. 432–449.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishiguro, N.B., Miya, M., and Nishida, M., Basal Euteleostean Relationships: A Mitogenomic Perspective on the Phylogenetic Reality of the “Protacanthopterygii”, Mol. Phylogenet. Evol., 2003, vol. 27, no. 3, pp. 476–488.PubMedCrossRefGoogle Scholar
  22. 22.
    López, J.A., Chen, W., and Ort, G., Esociform Phylogeny, Copeia, 2004, no. 3, pp. 449–464.Google Scholar
  23. 23.
    Ilves, K.L. and Tailor, E.B., Evolutionary and Biogeographical Patterns within the Smelt Genus Hypomesus in the North Pacific Ocean, J. Biogeography, 2008, vol. 35, pp. 48–64.Google Scholar
  24. 24.
    Kirpichnikov, V.S., Biological and Systematic Essay on Smelt of the White Sea, Czech Bay, and Pechora River, Okeanologiya, 1935, vol. 2, pp. 103–191.Google Scholar
  25. 25.
    Lindberg, G.U. and Legeza, M.I., Ryby Yaponskogo morya i sopredel’nykh chastei Okhotskogo i Zheltogo morei (Fishes of the Sea of Japan and the Adjacent Areas of the Sea of Okhotsk and the Yellow Sea), Moscow: Nauka, 1965, part 2.Google Scholar
  26. 26.
    Podushko, Yu.N., The Relation between the Biological Characteristics and the Population Dynamics of the Smelt (Osmerus eperlanus dentex (Steindachner)) Spawning in the Amur River, Vopr. Ikhtiol., 1970, vol. 10, no. 5, pp. 797–806.Google Scholar
  27. 27.
    Kuchina, E.S., Biological Characteristics of Commercial Fish from Priusinsk Section of the Pechora River, Tr. Komi Filial Akad. Nauk SSSR, 1971, no. 22, pp. 139–156.Google Scholar
  28. 28.
    Altukhov, K.A. and Yerastova, V.M., Biological Characteristic of the Smelt Osmerus eperlanus (L.) from the Karelian White Sea Coast, Vopr. Ikhtiol., 1974, vol. 14, no. 1, pp. 83–94.Google Scholar
  29. 29.
    Fedorova, G.V., Morphometric Characteristic of the Smelt Osmerus eperlanus eperlanus Morpha spirinchus Pallas from the Lakes Ilmen and Seliger, Vopr. Ikhtiol., 1974, vol. 14, no. 2, pp. 232–236.Google Scholar
  30. 30.
    Kriksunov, E.A. and Shatunovskii, M.I., Some Aspects of Variation in the Smelt Osmerus eperlanus (L.) Population Structure, Vopr. Ikhtiol., 1979, vol. 19, no. 1, pp. 55–62.Google Scholar
  31. 31.
    Gritsenko, O.F., Churikov, A.A., and Rodionova, S.S., The Ecology of Reproduction of Osmerus mordax dentex Steindachner (Osmeridae) in Rivers of Sakhalin Island, Vopr. Ikhtiol., 1984, vol. 24, no. 3, pp. 407–416.Google Scholar
  32. 32.
    Dudnik, Yu.I. and Shchukina, G.F., Spawning of Rainbow Smelt, Osmerus mordax dentex, in the Rivers of Northwest Sakhalin, Vopr. Ikhtiol., 1990, vol. 30, no. 1, pp. 151–154.Google Scholar
  33. 33.
    Shchukina, G.F., Distribution and Migration of Osmerus mordax dentex from the Sakhalin—Kuril Shelf, Vopr. Ikhtiol., 1999, vol. 39, no. 2, pp. 253–257.Google Scholar
  34. 34.
    Vasilets, P.M., Trofimov, I.K., and Raevskii, R.V., Morphological Differentiation of Rainbow Smelt, Osmerus mordax dentex, in Kamchatka Waters, Tr. Kamchat-NIRO, 2000, no. 5, pp. 101–105.Google Scholar
  35. 35.
    Chereshnev, I.A., Presnovodnye ryby Chukotki (Freshwater Fishes of Chukotka), Magadan: Severo-Vostochnyi Nauch. Tsentr Ross. Akad. Nauk, 2008.Google Scholar
  36. 36.
    Chereshnev, I.A., Volobuev, V.V., Shestakov, A.V., and Frolov, S.V., Lososevidnye ryby Severo-Vostoka Rossii (Salmonid Fishes of Northeast Russia), Vladivostok: Dal’nauka, 2002.Google Scholar
  37. 37.
    Chereshnev, I.A., Shestakov, A.V., Rakitina, M.V., and Santalova, M.Yu., Osmerid Fishes, in Landshafty, klimat i prirodnye resursy Tauiskoy Guby Okhotskogo morya (Landscapes, Climate, and Natural Resources of the Tauiskaya Bay of the Sea of Okhotsk), Vladivostok: Dal’nauka, 2006, pp. 376–387.Google Scholar
  38. 38.
    Sendek, D.S., Studenov, I.I., Sherstkov, V.S., et al., Genetic Differentiation of Osmerid Fish of the Genus Osmerus (Osmeridae, Salmoniformes) at the European North of Russia, in Lososevidnye ryby Vostochnoi Fennoskandii (Salmonid Fishes of Eastern Fennoscandia), Petrozavodsk: Karelskiy Nauch. Tsentr Ross. Akad. Nauk, 2005, pp. 148–157.Google Scholar
  39. 39.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1989.Google Scholar
  40. 40.
    Gharrett, A.J., Gray, A.K., and Brykov, V.A., Mitochondrial DNA Variation in Alaskan Coho Salmon, Oncorhynchus kisutch, Fish. Bull., 2001, vol. 99, pp. 528–544.Google Scholar
  41. 41.
    McElroy, D.M., Moran, P., Bermingham, E., and Kornfield, I., REAP: An Integrated Environment for the Manipulation and Phylogenetic Analysis of Restriction Data, J. Hered., 1992, vol. 83, pp. 153–158.Google Scholar
  42. 42.
    Schneider, S., Roessli, D., and Excoffier, L., Arlequin Ver. 2.000: A Software for Population Genetics Data Analysis, Geneva: Univ. Geneva, 2000.Google Scholar
  43. 43.
    Nei, M. and Tajima, F., DNA Polymorphism Detectable by Restriction Endonucleases, Genetics, 1981, vol. 97, pp. 145–163.PubMedGoogle Scholar
  44. 44.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  45. 45.
    Roff, D. and Bentzen, P., The Statistical Analysis of Mitochondrial DNA Polymorphisms: Chi-Square and the Problem of Small Samples, Mol. Biol. Evol., 1989, vol. 5, pp. 539–545.Google Scholar
  46. 46.
    Weir, B.S. and Cockerham, C.C., Estimating F-Statistics for the Analysis of Population Structure, Evolution, 1984, vol. 38, pp. 1358–1370.CrossRefGoogle Scholar
  47. 47.
    Excoffier, L., Smouse, P.E., and Quattro, J.M., Analysis of Molecular Variance Inferred from Metric Distances among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data, Genetics, 1992, vol. 131, pp. 479–491.PubMedGoogle Scholar
  48. 48.
    Nei, M. and Miller, J.C., A Simple Method for Estimating Average Number of Nucleotide Substitution within and between Populations from Restriction Date, Genetics, 1990, vol. 125, pp. 873–879.PubMedGoogle Scholar
  49. 49.
    Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.CrossRefGoogle Scholar
  50. 50.
    Sevilla, R.G., Diez, A., Noren, M., et al., Primers and Polymerase Chain Reaction Conditions for DNA Barcoding Teleost Fish Based on the Mitochondrial Cytochrome b and Nuclear Rhodopsin Genes, Mol. Ecol. Not., 2007, vol. 7, pp. 730–734.CrossRefGoogle Scholar
  51. 51.
    Ward, R.D., Zemlak, T.S., Innes, B.H., et al., DNA Barcoding Australia’s Fish Species, Philosoph. Trans. R. Soc., Ser. B Biol., 2005, vol. 360, no. 1462, pp. 1847–1857.CrossRefGoogle Scholar
  52. 52.
    Chow, S. and Hazama, K., Universal PCR Primers for S7 Ribosomal Protein Gene Introns in Fish, Mol. Ecol., 1998, vol. 7, no. 9, pp. 1255–1256.PubMedGoogle Scholar
  53. 53.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.PubMedCrossRefGoogle Scholar
  54. 54.
    Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian Inference of Phylogeny, Bioinformatics, 2001, vol. 17, pp. 754–755.PubMedCrossRefGoogle Scholar
  55. 55.
    Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony, Version 4.10, Sunderland: Sinauer Associates, 2002.Google Scholar
  56. 56.
    Posada, D. and Crandall, K.A., Modeltest: Testing the Model of DNA Substitution, Bioinformatics, 1998, vol. 14, pp. 817–818.PubMedCrossRefGoogle Scholar
  57. 57.
    Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., and Nieves-Aldrey, J.L., Bayesian Phylogenetic Analysis of Combined Data, Syst. Biol., 2004, vol. 53, no. 1, pp. 47–67.PubMedCrossRefGoogle Scholar
  58. 58.
    Baby, M.-C., Bernatchez, L., and Dodson, J.J., Genetic Structure and Relationships among Anadromous and Landlocked Populations of Rainbow Smelt, Osmerus mordax mitchill, as Revealed by mtDNA Restriction Analysis, J. Fish. Biol., 1991, vol. 39,suppl. A, pp. 61–68.CrossRefGoogle Scholar
  59. 59.
    Taylor, E.B. and Bentzen, P., Evidence for Multiple Origins and Sympatric Divergence of Trophic Ecotypes of Smelt (Osmerus) in Northeastern North America, Evolution, 1993, vol. 47, no. 3, pp. 813–832.CrossRefGoogle Scholar
  60. 60.
    Bernatchez, L. and Martin, S., Mitochondrial DNA Diversity in Anadromous Rainbow Smelt, Osmerus mordax mitchill: A Genetic Assessment of the Member-Vagrant Hypothesis, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 424–433.CrossRefGoogle Scholar
  61. 61.
    Bernatchez, L., Mitochondrial DNA Analysis Confirms the Existence of Two Glacial Races of Rainbow Smelt Osmerus mordax and Their Reproductive Isolation in the St. Lawrence River Estuary (Quebec, Canada), Mol. Ecol., 1997, vol. 6, pp. 73–83.CrossRefGoogle Scholar
  62. 62.
    Pigeon, D., Dodson, J.J., and Bernatchez, L., A mtDNA Analysis of Spatiotemporal Distribution of Two Sympatric Larval Populations of Rainbow Smelt (Osmerus mordax) in the St. Lawrence River Estuary, Quebec, Canada, Can. J. Fish. Aquat. Sci., 1998, vol. 55, pp. 1739–1747.CrossRefGoogle Scholar
  63. 63.
    Skurikhina, L.A., Kukhlevsky, A.D., and Kovpak, N.E., Relationships of Osmerid Fishes (Osmeridae) of Russia: Divergence of Nucleotide Sequences of Mitochondrial and Nuclear Genes, Mol. Evol., 2011 (in press).Google Scholar
  64. 64.
    Andriyashev, A.P., Zoogeography and Origin of Fish Fauna of the Bering Sea and Adjacent Waters, Cand. Sci. (Biol.) Dissertation, Leningrad: Leningrad Gos. Univ., 1939, p. 187.Google Scholar
  65. 65.
    Rumyantsev, A.I., Capelin of the Sea of Japan, Izv. TINRO, 1946, vol. 22, pp. 35–74.Google Scholar
  66. 66.
    Nelson, J.S., Fishes of the World, New York: Wiley, 1994.Google Scholar
  67. 67.
    Dodson, J.J., Tremblay, S., Colombani, F., et al., Trans-Arctic Dispersals and the Evolution of a Circumpolar Marine Fish Species Complex, the Capelin (Mallotus villosus), Mol. Ecol., 2007, vol. 16, pp. 5030–5043.PubMedCrossRefGoogle Scholar
  68. 68.
    Petrov, O.M., Geological History of the Bering Strait in the Late Cenozoic, in Beringiya v kainozoe (Beringia in Cenozoic), Proc. All-Union Symposium Beringiiskaya susha i ee znachenie dlya razvitiya golarkticheskikh flor i faun v kainozoe (Beringian Landmass and Its Value for Development of Holarctic Floras and Faunas in Cenozoic), Khabarovsk, 1973), Vladivostok: Dalnevostochnyi Nauchn. Tzentr Akad. Nauk SSSR, 1976, pp. 28–32.Google Scholar
  69. 69.
    Hopkins, D.M., Sea Level History in Beringia during the Past 250000 Years, in Beringiya v kainozoe (Beringia in Cenozoic), Proc. All-Union Symposium Beringiiskaya susha i ee znachenie dlya razvitiya golarkticheskikh flor i faun v kainozoe (Beringian Landmass and Its Value for Development of Holarctic Floras and Faunas in Cenozoic), Khabarovsk, 1973), Vladivostok: Dalnevostochnyi Nauchn. Tzentr Akad. Nauk SSSR, 1976, pp. 9–27.Google Scholar
  70. 70.
    Marincovich, L. and Gladenkov, A.Yu., Evidence for an Early Opening of the Bering Strait, Nature, 1999, vol. 397, no. 14, pp. 149–151.CrossRefGoogle Scholar
  71. 71.
    Sher, A., Traffic Lights at the Beringian Crossroads, Nature, 1999, vol. 397, no. 14, pp. 103–104.CrossRefGoogle Scholar
  72. 72.
    Gladenkov, A.Yu., Oleinik, A.E., Marincovich, L., and Barinov, K.B., A Refined Age for the Earliest Opening of Bering Strait, Palaeo, 2002, vol. 183, pp. 321–328.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • N. E. Kovpak
    • 1
  • L. A. Skurikhina
    • 1
  • A. D. Kukhlevsky
    • 1
    • 2
  • A. G. Oleinik
    • 1
  • D. S. Sendek
    • 3
  1. 1.Zhirmunsky Institute of Marine BiologyRussian Academy of SciencesVladivostokRussia
  2. 2.Department of GeneticsFar Eastern National UniversityVladivostokRussia
  3. 3.State Research Institute of Lake and River FisheriesSt.PetersburgRussia

Personalised recommendations