Advertisement

Comparative cytogenetic analysis of hexaploid Avena L. species

  • E. D. Badaeva
  • O. Yu. Shelukhina
  • O. S. Dedkova
  • I. G. Loskutov
  • V. A. Pukhalskyi
Plant Genetics

Abstract

Using C-banding method and in situ hybridizatiion with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal patterns and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of patterns of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C–17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.

Keywords

Genome Chromosome Hexaploid Species Avena Fatua Avena Species Intergenomic Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baum, B.R., Oats: Wild and Cultivated. A Monograph of the Genus Avena L. (Poaceae), Ottawa: Thorn, 1977.Google Scholar
  2. 2.
    Loskutov, I.G., Species Diversity and Breeding Potential in the Genus Avena L., Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: All-Russ. Inst. Plant Industry, 2003, p. 38.Google Scholar
  3. 3.
    Zohary, D. and Hopf, M., Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and Nile Valley, Oxford: Clarendon, 1988.Google Scholar
  4. 4.
    Villaret-von Rochow, M., Avena ludoviciana Dur. im Schweizer Spaetneolithikum, ein Beitrag zur Abstaemmung des Saathafers, Ber. Deutsch. Bot. Ges., 1971, vol. 84, no. 5, pp. 243–238.Google Scholar
  5. 5.
    Sinskaya, E.N., Istoricheskaya geografiya kul’turnoi flory (Na zare zemledeliya) (Historical Geography of Cultivated Flora (At the Dawn of Agriculture)), Leningrad: Kolos, 1969.Google Scholar
  6. 6.
    Ladizinsky, G. and Zohary, D., Notes on Species Delimitation, Species Relationships, and Polyploidy in Avena L., Euphytica, 1971, vol. 20, no. 3, pp. 380–395.CrossRefGoogle Scholar
  7. 7.
    Mal’tsev, A.I., Ovsyugi i ovsy (Wild and Cultivated Oats), Leningrad: Izd. Vses. inst. prikladnoi botaniki i novykh kul’tur, 1930.Google Scholar
  8. 8.
    Rodionova, N.A., Soldatov, V.N., Merezhko, V.E., et al., Oves: Kul’turnaya flora (Oat: Cultivated Flora), Moscow: Kolos, 1994.Google Scholar
  9. 9.
    Zhou, X., Jellen, E.N., and Murphy, J.P., Progenitor Germplasm of Domesticated Hexaploid Oat, Crop Sci., 1999, vol. 39, no. 4, pp. 1208–1214.CrossRefGoogle Scholar
  10. 10.
    Sinskaya, E.N., Field Crops of the Altai, Tr. Prikladnoy Botanike Genet. Sel., 1925, vol. 24, no. 1, pp. 14–18.Google Scholar
  11. 11.
    Rajharthy, T. and Thomas, H., Cytogenetics of Oats (Avena L.), Misc. Publ. Genet. Soc. Can., 1974, vol. 2, pp. 1–90.Google Scholar
  12. 12.
    Rajharthy, T. and Dyck, P.L., Chromosomal Differentiation and Speciation in Diploid Avena: II. The Karyo-type of A. pilosa, Can. Genet. Cytol., 1963, vol. 5, no. 2, pp. 175–179.Google Scholar
  13. 13.
    Radjhathy, T. and Morrison, J.W., Chromosome Morphology in the Genus Avena, Can. J. Bot., 1959, vol. 37, pp. 331–337.CrossRefGoogle Scholar
  14. 14.
    Rajharthy, T., A Standard Karyotype for Avena sativa, Can. J. Genet. Cytol., 1963, vol. 5, no. 2, pp. 127–132.Google Scholar
  15. 15.
    Chen, Q. and Armstrong, K., Genomic in situ Hybridization in Avena sativa, Genome, 1994, vol. 37, no. 4, pp. 607–612.PubMedCrossRefGoogle Scholar
  16. 16.
    Jellen, E.N., Gill, B.S., Cox, T.S., Genomic in situ Hybridization Detects C-Genome Chromatin and Intergenomic Translocation in Polyploidy Oat Species (Genus Avena), Genome, 1994, vol. 37, pp. 613–618.PubMedCrossRefGoogle Scholar
  17. 17.
    Hayasaki, M., Morikawa, T., and Tarumoto, I., Intergenomic Translocations of Polyploid Oats (Genus Avena) Revealed by Genomic in situ Hybridization, Genes Genet. Syst., 2000, vol. 75, no. 3, pp. 167–171.PubMedCrossRefGoogle Scholar
  18. 18.
    Fominaya, A., Vega, C., and Ferrer, E., C-Banding and Nucleolar Activity of Tetraploid Avena Species, Genome, 1988, vol. 30, pp. 633–638.CrossRefGoogle Scholar
  19. 15.
    Fominaya, A., Hueros, G., Loarce, Y., and Ferrer, E., Chromosomal Distribution of a Repeated DNA Sequence from C-Genome Heterochromatin and the Identification of a New Ribosomal DNA Locus in the Avena Genus, Genome, 1995, vol. 38, pp. 548–557.PubMedCrossRefGoogle Scholar
  20. 19.
    Linares, C., Ferrer, E., and Fominaya, A., Discrimination of the Closely Related A and D Genomes of the Hexaploid Oat Avena sativa L., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 21, pp. 12450–12455.PubMedCrossRefGoogle Scholar
  21. 20.
    Linares, C., Irigoyen, M.L., and Fominaya, A., Identification of C-Genome Chromosomes Involved in Intergenomic Translocations in Avena sativa L. Using Cloned Repetitive DNA Sequences, Theor. Appl. Genet., 2000, vol. 100, no. 3, pp. 353–360.CrossRefGoogle Scholar
  22. 21.
    Yang, Q., Hanson, L., Bennett, M.D., et al., Genome Structure and Evolution in the Allohexaploid Weed Avena fatua L. (Poaceae), Genome, 1999, vol. 42, no. 3, pp. 512–518.PubMedGoogle Scholar
  23. 22.
    Baum, B.R., Classification of the Oat Species (Avena, Poaceae) Using Various Taximetric Methods and Information-Theoretic Model, Can. J. Bot., 1974, vol. 52, no. 11, pp. 2241–2262.CrossRefGoogle Scholar
  24. 23.
    Loskutov, I.G., Interspecific Crosses in the Genus Avena L., Russ. J. Genet., 2001, vol. 37, no. 5, pp. 467–475.CrossRefGoogle Scholar
  25. 24.
    Loskutov, I.G. and Abramova, L.I., Morphological and Karyological Inventory of Avena L. Species, Tsitologiya, 1999, vol. 41, no. 12, pp. 1069–1070.Google Scholar
  26. 25.
    Mal’tsev, A.I., New System of the Sectio Euavena Griseb., Byull. Prikladnoy Bot. Genet. Sel., 1929, vol. 20, pp. 127–149.Google Scholar
  27. 26.
    Nocelli, E., Giovannini, T., Bioni, M., et al., RFLP- and RAPD-Based Genetic Relationships of Seven Diploid Species of Avena with the A Genome, Genome, 1999, vol. 42, no. 5, pp. 950–959.PubMedGoogle Scholar
  28. 27.
    Drossou, A., Katsiotis, A., Leggett, J.M., et al., Genome and Species Relationships in Genus Avena Based on RAPD and AFLP Molecular Markers, Theor. Appl. Genet., 2004, vol. 109, no. 1, pp. 48–54.PubMedCrossRefGoogle Scholar
  29. 28.
    Paczos-Grzeda, E., Pedigree, RAPD and Simplified AFLP-Based Assessment of Genetic Relationships among Avena sativa L. Cultivars, Euphytica, 2004, vol. 138, no. 1, pp. 13–22.CrossRefGoogle Scholar
  30. 29.
    Fu, Y.-B. and Williams, D., AFLP Variation in 25 Avena Species, Theor. Appl. Genet., 2008, vol. 117, no. 3, pp. 333–342.PubMedCrossRefGoogle Scholar
  31. 30.
    Nikoloudakis, N., Skaracis, G., and Katsiotis, A., Evolutionary Insights Inferred by Molecular Analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. Sequences, Mol. Phyl. Evol., 2008, vol. 46, no. 1, pp. 102–115.CrossRefGoogle Scholar
  32. 31.
    Li, W.-T., Peng, Y.-Y., Wei, Y.-M., et al., Relationships among Avena Species as Revealed by Consensus Chloroplast Simple Sequence Repeat (ccSSR) Markers, Genet. Res. Crop Evol., 2009, vol. 56, no. 4, pp. 465–480.CrossRefGoogle Scholar
  33. 32.
    Rajhathy, T, The Chromosomes of Avena, Chromosome Engineering in Plants: Genetics, Breeding, Evolution, Gupta, P.K., and Tsuchiya, T., Eds., Elsevier, 1991, part A, pp. 449–467.Google Scholar
  34. 33.
    Dilkova, M., Jellen, E.N., and Forsberg, R.A., C-Banded Karyotypes and Meiotic Abnormalities in Germplasm Derived from Interploidy Crosses in Avena, Euphytica, 2000, vol. 111, no. 3, pp. 175–184.CrossRefGoogle Scholar
  35. 34.
    Jellen, E.N. and Beard, J., Geographical Distribution of a Chromosome 7C and 17 Intergenomic Translocation in Cultivated Oat, Crop Sci., 2000, vol. 40, no. 1, pp. 256–263.CrossRefGoogle Scholar
  36. 35.
    Jellen, E.N., Philipps, G., and Rines, H.W., C-Banded Karyotypes and Polymorphisms in Hexaploid Oat Accessions (Avena sativa) Using Wright’s Stain, Genome, 1993, vol. 36, no. 6, pp. 1129–1137.PubMedCrossRefGoogle Scholar
  37. 36.
    Jellen, E.N., Rines, H.W., Fox, S.L., et al., Characterization of ’sun II’ Oat Monosomics through C-Banding and Identification of Eight New ’sun II’ Monosomics, Theor. Appl. Genet., 1997, vol. 95, no. 8, pp. 1190–1195.CrossRefGoogle Scholar
  38. 37.
    Jellen, E.N., Rooney, W.L., Philipps, G., et al., Characterization of the Hexaploid Oat Avena byzantine cv. Kanota Monosomic Series Using C-Banding and RFLPs, Genome, 1993, vol. 36, no. 5, pp. 962–970.PubMedCrossRefGoogle Scholar
  39. 38.
    Linares, C., Vega, C., Ferrer, E., et al., Identification of C-Banded Chromosomes in Meiosis and the Analysis of Nucleolar Activity in Avena byzantine C. Koch cv. “Kanota”, Theor. Appl. Genet., 1992, vol. 83, no. 5, pp. 650–654.CrossRefGoogle Scholar
  40. 39.
    Mitchell, C.C., Parkinson, S.E., Baker, T.J., et al., C-Banding and Localization of 18S-5.8S-26S rDNA in Tall Oatgrass Species, Crop Sci., 2003, vol. 43, no. 1, pp. 32–36.CrossRefGoogle Scholar
  41. 40.
    Rooney, W.L., Jellen, E.N., Phillips, R.L., et al., Identification of Homoeologous Chromosomes in Hexaploid Oat (A. byzantine cv. Kanota) Using Monosomics and RFLP Analysis, Theor. Appl. Genet., 1994, vol. 89, nos. 2–3, pp. 329–335.Google Scholar
  42. 41.
    Gupta, P.K., Giband, M., and Altosaar, I., Two Molecular Probes Characterizing the A and C Genomes in the Genus Avena (Oats), Genome, 1992, vol. 35, no. 5, pp. 916–920.CrossRefGoogle Scholar
  43. 42.
    Linares, C., Gonzalez, J., Ferrer, E., et al., The Use of Double Fluorescence in situ Hybridization to Physically Map the Position of 5S rDNA Genes in Relation to the Chromosomal Location of 18S-5.8S-26S rDNA and a C Genome Specific DNA Sequence in the Genus Avena, Genome, 1996, vol. 39, pp. 535–542.PubMedCrossRefGoogle Scholar
  44. 43.
    Irigoyen, M.L., Linares, C., Ferrer, E., and Fominaya, A., Fluorescence in situ Hybridization Mapping of Avena sativa L. cv. SunII and Its Monosomic Lines Using Cloned Repetitive DNA Sequences, Genome, 2002, vol. 45, no. 6, pp. 1230–1237.PubMedCrossRefGoogle Scholar
  45. 44.
    Badaeva, E.D., Badaev, N.S., Gill, B.S., et al., Intraspecific Karyotype Divergence in Triticum araraticum (Poaceae), Plant Syst. Evol., 1994, vol. 192, nos. 1–2, pp. 117–145.CrossRefGoogle Scholar
  46. 45.
    Gerlach, W.L. and Bedbrook, J.R., Cloning and Characterization of Ribosomal RNA Genes from Wheat and Barley, Nucl. Acids Res., 1979, vol. 7, no. 7, pp. 1869–1885.PubMedCrossRefGoogle Scholar
  47. 46.
    Gerlach, W.L. and Dyer, T.A., Sequence Organization of the Repeated Units in the Nucleus of Wheat Which Contains 5S-rRNA Genes, Nucl. Acids Res., 1980, vol. 8, no. 21, pp. 4851–4865.PubMedCrossRefGoogle Scholar
  48. 47.
    Badaeva, E.D., Friebe, B., and Gill, B.S., Genome Differentiation in Aegilops: 1. Distribution of Highly Repetitive DNA Sequences on Chromosomes of Diploid Species, Genome, 1996, vol. 39, no. 2, pp. 293–306.PubMedCrossRefGoogle Scholar
  49. 48.
    Fominaya, A., Vega, C., and Ferrer, E., C-Banding and Nucleolar Activity of Tetraploid Avena Species, Genome, 1988, vol. 30, pp. 633–638.CrossRefGoogle Scholar
  50. 49.
    Badaeva, E.D., Loskutov, I.G., Shelukhina, O.Yu., and Pukhalsky, V.A., Cytogenetic Analysis of Diploid Avena L. Species Containing the As Genome, Russ. J. Genet., 2005, vol. 41, no. 12, pp. 1428–1433.CrossRefGoogle Scholar
  51. 50.
    Badaeva, E.D., Shelukhina, O.Y., Diederichsen, A., et al., Comparative Cytogenetic Analysis of Avena macrostachya and Diploid C-Genome Avena Species, Genome, 2010, vol. 53, no. 2, pp. 125–137.PubMedCrossRefGoogle Scholar
  52. 51.
    Li, C.-D., Rossnagel, B.G., and Scoles, G.J., Tracing the Phylogeny of the Hexaploid Oat Avena sativa with Satellite DNAs, Crop Sci., 2000, vol. 40, no. 6, pp. 1755–1763.CrossRefGoogle Scholar
  53. 52.
    Portyanko, V.A., Hoffman, D.L., Lee, M., et al., A Linkage Map of Hexaploid Oat Based on Grass Anchor DNA Clones and Its Relationship to Other Oat Map, Genome, 2001, vol. 44, no. 2, pp. 249–265.PubMedCrossRefGoogle Scholar
  54. 53.
    Shelukhina, O.Yu., Badaeva, E.D., Loskutov, I.G., and Pukhalsky V.A., A Comparative Cytogenetic Study of the Tetraploid Oat Species with the A and C Genomes: Avena insularis, A. magna, and A. murphi, Russ. J. Genet., 2007, vol. 43, no. 6, pp. 613–626.CrossRefGoogle Scholar
  55. 54.
    Jellen, E.N. and Ladizinsky, G., Giemsa C-Banding in Avena insularis Ladizinsky, Genet. Res. Crop Evol., 2000, vol. 47, no. 3, pp. 227–230.CrossRefGoogle Scholar
  56. 55.
    Fominaya, A., Vega, P., and Ferrer, E., Giemsa C-Banded Karyotypes of Avena Species, Genome, 1988, vol. 30, pp. 627–632.CrossRefGoogle Scholar
  57. 56.
    Mal’tsev, A.I., Ovsyugi i ovsy section Euavena (Wild and Cultivated Oats of the Section Euavena), in Trudy po prikladnoi botanike, genetike i selektzii, suppl. 38, 1930.Google Scholar
  58. 57.
    Thomas, H., New Species of Avena, Proc. 3rd Int. Oat Conf., (Lund, 1988), Mattson, B. and Svalof, L.R.V., Eds., Lund, 1989, pp. 18–23.Google Scholar
  59. 58.
    Leggett, J.M. and Markhand, G.S., The Genomic Identification of Some Monosomics of Avena sativa L. cv. Sun-II Using Genomic in situ Hybridization, Genome, 1995, vol. 38, no. 4, pp. 747–751.PubMedCrossRefGoogle Scholar
  60. 59.
    Gill, B.S. and Chen, P.D., Role of Cytoplasm-Specific Introgression in the Evolution of the Polyploid Wheats, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 19, pp. 6800–6804.PubMedCrossRefGoogle Scholar
  61. 60.
    Leggett, J.M. and Markland, G.S., The Genomic Structure of Avena Revealed by GISH, Proc. Kew Chromosome Conference IV, Brandham, P.E. and Bennett, M.D., Eds., Kew: Royal Botanical Gardens, 1995, pp. 133–139.Google Scholar
  62. 61.
    Ladizinsky, G., A New Species of Avena from Sicily, Possibly the Tetraploid Progenitor of Hexaploid Oats, Genet. Resour. Crop Evol., 1998, vol. 45, no. 3, pp. 263–269.CrossRefGoogle Scholar
  63. 62.
    Leggett, J.M., Morphology and Metaphase Chromosome Pairing in Three Avena Hybrids, Can. J. Genet. Cytol., 1984, vol. 26, no. 6, pp. 641–645.Google Scholar
  64. 63.
    Peng, Y.-Y., Wei, Y.-M., Baum, B.R., et al., Molecular Diversity of the 5S rRNA Gene and Genomic Relationships in the Genus Avena (Poaceae: Aveneae), Genome, 2008, vol. 51, no. 2, pp. 137–154.PubMedCrossRefGoogle Scholar
  65. 64.
    Nikoloudakis, N. and Katsiotis, A., The Origin of the C-Genome and Cytoplasm of Avena Polyploids, Theor. Appl. Genet., 2008, vol. 117, no. 2, pp. 273–281.PubMedCrossRefGoogle Scholar
  66. 65.
    Comai, L., Genetic and Epigenetic Interactions in Allopolyploid Plants, Plant Mol. Biol., 2000, vol. 43, no. 2, pp. 387–399.PubMedCrossRefGoogle Scholar
  67. 66.
    Feldman, M. and Levy, A.A., Allopolyploidy-a Shaping Force in the Evolution of Wheat Genomes, Cytogenet. Genome Res., 2005, vol. 109, nos. 1–3, pp. 250–258.PubMedCrossRefGoogle Scholar
  68. 67.
    Feldman, M., Liu, B., Segal, G., et al., Rapid Elimination of Low-Copy DNA Sequences in Polyploid Wheat: A Possible Mechanism for Differentiation of Homoeologous Chromosomes, Genetics, 1997, vol. 147, no. 3, pp. 1381–1387.PubMedGoogle Scholar
  69. 68.
    Hanson, R.E., Islam-Faridi, M.N., Crane, C.F., et al., Ty1-Copia-Retrotransposon Behavior in a Polyploid Cotton, Chrom. Res., 2000, vol. 8, no. 1, pp. 73–76.PubMedCrossRefGoogle Scholar
  70. 69.
    Ozkan, H., Levy, A.A., and Feldman, M., Allopolyploidy-Induced Rapid Genome Evolution in the Wheat (Aegilops-Triticum) Group, Plant Cell, 2001, vol. 13, no. 8, pp. 1735–1747.PubMedCrossRefGoogle Scholar
  71. 70.
    Zhao, X.P., Si, Y., Hanson, R.E., et al., Dispersed Repetitive DNA Has Spread to New Genomes Since Polyploid Formation in Cotton, Genome Res., 1998, vol. 8, no. 5, pp. 479–492.PubMedGoogle Scholar
  72. 71.
    Jellen, E.N., Phillips, R.L., and Rines, H.W., Chromosomal Localization and Polymorphisms of Ribosomal DNA in Oat (Avena ssp.), Genome, 1994, vol. 37, no. 1, pp. 23–32.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. D. Badaeva
    • 1
    • 2
  • O. Yu. Shelukhina
    • 1
  • O. S. Dedkova
    • 1
  • I. G. Loskutov
    • 3
  • V. A. Pukhalskyi
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Vavilov Institute of Plant IndustryRussian Academy of Agricultural SciencesSt. PetersburgRussia

Personalised recommendations