Genetic variability and the origin of house mouse from the territory of russia and neighboring countries

  • L. V. Frisman
  • K. V. Korobitsyna
  • L. V. Yakimenko
  • A. I. Munteanu
  • K. Moriwaki
Animal Genetics

Abstract

Genetic differentiation and gene geographic variation of house mouse from the territory of Russia and neighboring countries was examined based on the allozyme analysis of samples from natural, semisynanthropic, and obligate synanthropic populations. The results of analysis of genetic differentiation, performed using 22 interpreted loci, as well as the data on gene geographic variation of four allozyme markers (Idh-1, Sod-1, Aat-1, and hemoglobin) validated the hypothesis on rapid mice expansion from the south of Eastern Europe to the Pacific coast of Asia. It was demonstrated that moving eastwards led to the formation currently expanding zones of hybridization between the “northern” M. musculus group and the “Central Asian” M. wagneri group in Siberia, and with the M. m. castaneus group in the south of the Russian Far East. The allozyme data were compared with the data of molecular genetic and karyological analyses performed using the same experimental material. The phenomenon of hybrid zones of the house mouse from Eurasia is discussed.

References

  1. 1.
    Schwarz, E. and Schwarz, H., The Wild and Commensal Stocks of the House Mouse Mus musculus Linnaeus, J. Mammal., 1943, vol. 24, no. 1, pp. 59–72.CrossRefGoogle Scholar
  2. 2.
    Britton, J. and Thaler, L., Evidence for the Presence of Two Sympatric Species of Mice (Genus Mus L.) in Southern France Based on Biochemical Genetics, Biochem. Genet., 1978, vol. 16, nos. 3–4, pp. 213–223.PubMedCrossRefGoogle Scholar
  3. 3.
    Darviche, D., Benmendi, F., Britton-Davidian, J., and Thaler, L., Note: Donnees priliminaires sur la systematique biochimique des genres Mus et Apodemus en Iran, Mammalia, 1979, vol. 43, no. 4, pp. 427–430.Google Scholar
  4. 4.
    Thaler, L., Bonhomme, F., Britton-Davidian, J., and Hamar, M., The House Mouse Complex of Species: Sympatry of the House Mouse Biochemical Groups 2 and 4 in Rumania, Zeitschrift Saugetierkunde, 1981, vol. 46, pp. 169–173.Google Scholar
  5. 5.
    Milishnikov, A.N., Lavrenchenko, L.A., Rafiev, A.N., and Orlov, V.N., About Biochemical and Morphological Identification of Some Forms of the Superspecies Complex Mus musculus s. lato, Domovaya mysh’ (House Mouse), Kotenkova, E.V. and Bulatova, N.Sh., Eds., Moscow: Nauka, 1989., pp. 80–89.Google Scholar
  6. 6.
    Mezhzherin, S.V. and Zagorodnyuk, I.V., Morphological, Karyological, and Genetic Differences between House Mus musculus and European Wild Mus hortulanus Mice, Domovaya mysh’ (House Mouse), Kotenkova, E.V. and Bulatova, N.Sh., Eds., Moscow: Nauka, 1989, pp. 99–114.Google Scholar
  7. 7.
    Frisman, L.V., Korobitsyna, K.V., Yakimenko, L.V., et al., Genetic Differentiation of House Mouse of the USSR Fauna: Electrophoretic Study of Proteins, Biol. J. Linn. Soc., 1990, vol. 41, no. 1, pp. 65–72.CrossRefGoogle Scholar
  8. 8.
    Ueda, Y., Miyashita, N., Imai, K., et al., Nucleotide Sequences of the Mouse Globin Beta Gene cDNAs in a Wild Derived New Haplotype Hbb-wl, Mammal. Genome, 1999, vol. 10, no. 9, pp. 879–882.CrossRefGoogle Scholar
  9. 9.
    Mijashita, N., Moriwaki, K., and Minezawa, M., Allelic Constitution of the Hemoglobin Beta Chain in Wild Populations of the House Mouse Mus musculus, Genetics, 1985, vol. 23, no. 12, pp. 975–986.Google Scholar
  10. 10.
    Petras, M. and Martin, J., Improved Electrophoretic Resolution of Some Hemoglobin Variants in Mus musculus, Biochem. Genet., 1969, vol. 3, no. 3, pp. 303–309.CrossRefGoogle Scholar
  11. 11.
    Kawashima, T., Miyashita, K., Tsuchiya, K., et al., Geographical Distribution of the Hbb Haplotypes in the Mus musculus Subspecies in Eastern Asia, Jpn. J. Genet., 1995, vol. 70, no. 1, pp. 17–23.PubMedCrossRefGoogle Scholar
  12. 12.
    Korobitsyna, K.V. and Yakimenko, L.V., The Role and Place of wagneri-Like Morphs of House Mouse (Rodentia: Muridae) in the Fauna of Russia and Adjacent Countries, Zool. Zh., 2004, vol. 83, no. 8, pp. 1018–1030.Google Scholar
  13. 13.
    Marshall, J., Identification and Scientific Names of Eurasian House Mice and Their European Allies Subgenus Mus (Rodentia, Muridae), Springfield: Kinko’s, 1826.Google Scholar
  14. 14.
    Prilutskaya, L.I., Modern Geographic Range of House Mouse in the Soviet Union, Domovaya mysh’ (House Mouse), Kotenkova, E.V. and Bulatova, N.Sh., Eds., Moscow: Nauka, 1989, pp. 15–27.Google Scholar
  15. 15.
    Kucheruk, V.V., The Range of House Mice of the Superspecies Complex Mus musculus sensu lato, in Domovaya mysh’ (proiskhozhdenie, rasprostranenie, sistematika, povedenie) (Origin, Distribution, Systematics, and Behavior of the House Mouse), Moscow: Nauka, 1994, pp. 56–80.Google Scholar
  16. 16.
    Pasteur, N., Pasteur, G., Bonchomme, F., et al., Practical Isozyme Genetics, New York: Hebsted Press, 1988.Google Scholar
  17. 17.
    Swofford, D.R. and Selander, R.B., Biosys-1: A FOR-TRAN Program for the Comprehensive Analysis of Electrophoretic Data in Population Genetic and Systematic, J. Hered., 1981, vol. 72, no. 4, pp. 281–283.Google Scholar
  18. 18.
    Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 89, pp. 583–590.PubMedGoogle Scholar
  19. 19.
    Minezawa, M., Moriwaki, K., and Kondo, K., The Third Allele of Supernatant Isocitrate Dehydrogenase of House Mouse, Id-I-c, Originates from Asian Continent, Jpn. J. Genet., 1980, vol. 55, no. 5, pp. 389–396.CrossRefGoogle Scholar
  20. 20.
    Bonhomme, F., Miyashita, N., Boursot, P., et al., Genetic Variation and Polyphyletic Origin in Japanese Mus musculus, Heredity, 1989, vol. 63, no. 3, pp. 299–308.PubMedCrossRefGoogle Scholar
  21. 21.
    Din, W., Anand, R., Boursot, P., et al., Origin and Radiation of the House Mouse: Clues from Nuclear Genes, J. Evol. Biol., 1996, vol. 9, pp. 519–539.CrossRefGoogle Scholar
  22. 22.
    ICLAS Manual for Genetic Monitoring of Inbred Mice, Tokyo: Univ. Tokyo Press, 1984.Google Scholar
  23. 23.
    Creagan, R., Tishfield, J., McMorris, F.A., et al., Assignment of the Genes for Human Peptidase A to Chromosome 18 and Cytoplasmic Glutamic Oxaloacetate Transaminase to Chromosome 10 Using Somatic-Cell Hybrids, Cytogenet. Cell Genet., 1973, vol. 12, no. 3, pp. 187–198.PubMedCrossRefGoogle Scholar
  24. 24.
    Francke, U. and Taggart, R., Regional Mapping of SOD-1 on Mouse Chromosome 16, and of HPRT and Alpha-Gal (Ags) on Mouse X, Using Chinese Hamster-Mouse T (X, 16) 16 H Somatic Cell Hybrids, Cytogenet. Cell Genet., 1979, vol. 25, pp. 155–156.CrossRefGoogle Scholar
  25. 25.
    Yonekawa, H., Tsuda, K., and Yakimenko, L.V., et al., Genetic Diversity, Geographic Distribution and Evolutionary Relationships of Mus musculus Subspecies Based on Polymorphisms of Mitochondrial DNA, in Problemy evolyutsii (Problems of Evolution), Vladivostok: Dal’nauka, 2003, vol. 5, pp. 90–108.Google Scholar
  26. 26.
    Spiridonova, L.N., Korobshchyna, K.V., Yakimenko, L.V., and Bogdanov, A.S., Genetic Diversity of the House Mouse Mus musculus and Geographic Distribution of Its Subspecies-Specific RAPD Markers on the Territory of Russia, Russ. J. Genet., 2008, vol. 44, no. 5, pp. 584–594.CrossRefGoogle Scholar
  27. 27.
    Sato, J., Shinohara, A., Miyashita, N., et al., Discovery of a New Hbb Haplotype W2 in a Wild-Derived House Mouse, Mus musculus, Mamm. Genome, 2008, vol. 19, pp. 155–162.CrossRefGoogle Scholar
  28. 28.
    Kozlovskii, A.I., Bulatova, N.Sh., and Orlov, V.N., Inconclusive Interpretations of the Results of Cytogenetic and Biochemical Analysis of House Mice from Turkmenistan, Dokl. Akad. Nauk, 1997, vol. 353, no. 3, pp. 165–169.Google Scholar
  29. 29.
    Awasihi, M., Bhat, K., and Anand, R., Genetic Heterogeneity in the Indian Mus musculus, Biochem. Genet., 1998, vol. 36, no. 718, pp. 245–258.CrossRefGoogle Scholar
  30. 30.
    Boursot, P., Din, W., Anand, R., et al., Origin and Radiation of the House Mouse: Mitochondrial DNA Phylogeny, J. Evol. Biol., 1996, vol. 9, no. 4, pp. 391–415.CrossRefGoogle Scholar
  31. 31.
    Milishnikov, A.N., Lavrepchenko, L.A., and Lebedev, V.S., Origin of the House Mice (Superspecies Complex Mus musculus sensu lato) from the Transcaucasia Region: A New Look at Dispersal Routes and Evolution, Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1011–1026.CrossRefGoogle Scholar
  32. 32.
    Britton-Davidian, J., Fel-Clair, F., Lopez, J., et al., Postzygotic Isolation between the Two European Subspecies of the House Mouse: Estimates from Fertility Patterns in Wild and Laboratory-Bred Hybrids, Biol. J. Linnean Soc., 2005, vol. 84, no. 3, pp. 379–393.CrossRefGoogle Scholar
  33. 33.
    Vyskočilova, M., Pražanova, G., Forejt, J., and Pialek, J., Polymorphism in Hybrid Sterility Loci in Wild Derived Mus m. musculus Strains, in Rodents et Spatium on Rodent Biology, Proc. 11th Int. Conf., Myshkin, 2008, p. 11.Google Scholar
  34. 34.
    Oka, A., Aoto, T., Totsuka, Y., et al., Disruption of Genetic Interaction between Two Autosomal Regions and the X Chromosome Caused Reproductive Isolation between Mouse Strains Derived from Different Subspecies, Genetics, 2007, vol. 175, no. 2, pp. 185–197.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. V. Frisman
    • 1
    • 2
  • K. V. Korobitsyna
    • 2
  • L. V. Yakimenko
    • 3
  • A. I. Munteanu
    • 4
  • K. Moriwaki
    • 5
  1. 1.Institute for Complex Analysis of Regional ProblemsRussian Academy of SciencesBirobidzhanRussia
  2. 2.Institute of Biology and Soil ScienceVladivostokRussia
  3. 3.Department of Ecology and Management of Natural ResourcesVladivostok State University of Economics and ServiceVladivostokRussia
  4. 4.Zoological Institute of the Academy of Sciences of MoldovaChisinauMoldova
  5. 5.RIKEN BioResource CenterTsukubaJapan

Personalised recommendations