Skip to main content
Log in

Transgenic Belarussian-bred potato plants expressing the genes for antimicrobial peptides of the cecropin-melittin type

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Binary vectors for Agrobacterium-mediated transformation were constructed to express the genes for antimicrobial peptides (APs) of the cectropin-melittin type under the control of the cauliflower mosaic virus 35S RNA promoter in plants. It was shown with Escherichia coli and Agrobacterium tumefaciens cells that the cassettes could be cloned in pBI121-based vectors with deletion of the β-D-glycuronidase gene only in the orientation opposite to that of the original vector. Transgenic potato plants were obtained using the Belarussian varieties Odyssey, Vetraz, and Scarb. Their cells expressed the MsrA1 or CEMA peptides of the cecropin-melittin type. The expression was shown to confer higher resistance to bacterial (Erwinia carotovora) infection and extremely high resistance to fungal (Phytophtora infestans and Alternarla solani) infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brogden, K.A., Ackermann, M., McCray, P.B., et al., Antimicrobial Peptides in Animals and Their Role in Host Defences, Int. J. Antimicrob. Agents, 2003, vol. 22, no. 5, pp. 465–478.

    Article  CAS  PubMed  Google Scholar 

  2. Hui, L., Leung, K., and Chen, H.M., The Combined Effects of Antibacterial Peptide Cecropin A and Anti-Cancer Agents on Leukemia Cells, Anticancer Res. 2002, vol. 22, no. 5, pp. 2811–2816.

    CAS  PubMed  Google Scholar 

  3. Putsep, K., Normark, S., and Boman, H.G., The Origin of Cecropins; Implications from Synthetic Peptides Derived from Ribosomal Protein L1, FEBS Lett. 1999, vol. 451, pp. 249–252.

    Article  CAS  PubMed  Google Scholar 

  4. Reddy, K.V., Yedery, R.D., and Aranha, C., Antimicrobial Peptides: Premises and Promises, Int. J. Antimicrob. Agents, 2004, vol. 24, no. 6, pp. 536–547.

    Article  CAS  PubMed  Google Scholar 

  5. Brahmachary, M., Krishnan, S.P.T., Koh J.L.Y., and Khan, A.M., ANTIMIC: A Database of Antimicrobial Sequences, Nucleic Acids Res. 2004, vol. 32, database issue, pp. D586–D589.

    Article  CAS  PubMed  Google Scholar 

  6. Kamysz, W., Okrj, M., and Lukasiak, J., Novel Properties of Antimicrobial Peptides, Acta Biochim. Pol. 2003, vol. 50, pp. 461–469.

    CAS  PubMed  Google Scholar 

  7. Kokryakov, V.N., Koval’chuk, L.V., Aleshina, G.M., and Shamova, O.V., Cationic Antimicrobial Peptides as Molecular Immunity Factors: Multifunctionality, Zh. Mikrobiol. Epidemiol. Immunobiol. 2006, no. 2, pp. 98–105.

  8. Hancock, R.E. and Diamond, G., The Role of Cationic Antimicrobial Peptides in Innate Host Defenses, Trends Microbiol. 2000, vol. 8, pp. 402–410.

    Article  CAS  PubMed  Google Scholar 

  9. Perron, G.G., Zasloff, M., and Bell, G., Experimental Evolution of Resistance to an Antimicrobial Peptide, Proc. Biol. Sci. 2006, vol. 273, pp. 251–256.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, K.H., Development of Short Antimicrobial Peptides Derived from Host Defense Peptides or by Combinatorial Libraries, Curr. Pharm. Des. 2002, vol. 8, no. 9, pp. 795–813.

    Article  CAS  PubMed  Google Scholar 

  11. Ma, J.K., C, Chikwamba, R., Sparrow, P., et al., Molecular Farming for New Drugs and Vaccines, EMBO Rep. 2005, vol. 6, pp. 593–599.

    Article  CAS  PubMed  Google Scholar 

  12. Loose, C., Jensen, K., Rigoutsos, I., and Stephanopoulos, G., A Linguistic Model for the Rational Design of Antimicrobial Peptides, Nature, 2006, vol. 443, pp. 867–869.

    Article  CAS  PubMed  Google Scholar 

  13. Boman, H.G., Wade, D., Boman, L.A., et al., Antibacterial and Antimalarial Properties of Peptides That Are Cecropin-Melittin Hybrids, FEBS Lett. 1989, vol. 259, no. 1, pp. 103–106.

    Article  CAS  PubMed  Google Scholar 

  14. Friedrich, C., Scott, M.G., Karunaratne, N., et al., Salt-Resistant Alpha-Helical Cationic Antimicrobial Peptides, Antimicrob. Agents Chemother. 1999, vol. 43, no. 7, pp. 1542–1548.

    CAS  PubMed  Google Scholar 

  15. Oh, H., Hedberg, M., Wade, D., and Edlund, C., Activities of Synthetic Hybrid Peptides against Anaerobic Bacteria: Aspects of Methodology and Stability, Antimicrob. Agents Chemother. 2000, vol. 44, no. 1, pp. 68–72.

    Article  CAS  PubMed  Google Scholar 

  16. Zerbini, E., Andreu, D., Tonarelli, G., and Sequeira, M.D., In-vitro Activity of Two Hybrid Synthetic Peptides Having Antimicrobial Activity against Mycobacteria, Rev. Argent. Microbiol. 2006, vol. 38, pp. 221–223.

    PubMed  Google Scholar 

  17. Saugar, J.M., Rodrguez-Hernndez, M.J., de la Torre, B.G., et al., Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of Acinetobacter baumannii: Molecular Basis for the Differential Mechanisms of Action, Antimicrob. Agents Chemother. 2006, vol. 50, pp. 1251–1256.

    Article  CAS  PubMed  Google Scholar 

  18. Nan, Y.H., Park, K.H., Jeon, Y.J., et al., Antimicrobial and Anti-Inflammatory Activities of a Leu/Lys-Rich Antimicrobial Peptide with Phe-Peptoid Residues, Protein Pept. Lett. 2007, vol. 14, pp. 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  19. Cavallarin, L., Andreu, D., and San Segundo, B., Cecropin A-Derived Peptides Are Potent Inhibitors of Fungal Plant Pathogens, Mol. Plant Microbe Interact. 1998, vol. 11, pp. 218–227.

    Article  CAS  PubMed  Google Scholar 

  20. Yevtushenko, D.P., Romero, R., Forward, B.S., et al., Pathogen-Induced Expression of a Cecropin A-Melittin Antimicrobial Peptide Gene Confers Antifungal Resistance in Transgenic Tobacco, J. Exp. Bot. 2005, vol. 56, no. 416, pp. 1685–1695.

    Article  CAS  PubMed  Google Scholar 

  21. Osusky, M., Zhou, G., Osuska, L., et al., Transgenic Plants Expressing Cationic Peptide Chimeras Exhibit Broad-Spectrum Resistance to Phytopathogens, Nat. Biotech. 2000, vol. 18, pp. 1162–1166.

    Article  CAS  Google Scholar 

  22. Hancock, R.E.W., Brown, M.H., and Piers, K., US Patent Application Serial no. 07.913.492, 1992.

  23. Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences of the M13mp18 and pUC19 Vectors, Gene, 1985, vol. 33, pp. 103–119.

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook, J.W., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  25. Croy, R.R.D., Plant Molecular Biology: LabFax, Oxford: BIOS Sci., 1993.

    Google Scholar 

  26. Lazo, G.R., Stein, P.A., and Ludwig, R.A., A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium, Biotechnology, 1991, vol. 9, pp. 963–967.

    Article  CAS  PubMed  Google Scholar 

  27. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant. 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  28. Beaujean, A., Sangwan, R.S., Lecardonnel, A., and Sangwan-Norreel, B.S., Agrobacterium Mediated Transformation of Three Economically Important Potato Cultivars Using Sliced Internodal Explants: An Efficient Protocol of Transformation, J. Exp. Bot. 1998, vol. 49, no. 326, pp. 1589–1595.

    Article  CAS  Google Scholar 

  29. Draper, J, Scott, R.H, and Hamil, J, Transformation of Dicotyledonous Plant Cells Using Ti plasmid of Agrobacterium tumefaciens and Ri plasmid of A. rhizogenes, Plant Genetic Transformation and Gene Expression: A Laboratory Manual, Draper, J., Scott, R., Armitage, P., and Walden, R., Eds., Oxford: Blackwell, 1988, pp. 69–160.

    Google Scholar 

  30. Bradford, M.M., A Rapid and Sensitive for the Quantitation of Microgram Quantitites of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  31. Hultmark, D., Engstrm, A., and Andersson, K., Insect Immunity: Attacins, a Family of Antibacterial Proteins from Hyalophora cecropia, EMBO J. 1983, vol. 2, no. 4, pp. 571–576.

    CAS  PubMed  Google Scholar 

  32. Samakovlis, C., Kimbrell, D.A., Kylsten, P., et al., The Immune Response in Drosophila: Pattern of Cecropin Expression and Biological Activity, EMBO J. 1990, vol. 9, no. 9, pp. 2969–2976.

    CAS  PubMed  Google Scholar 

  33. Ivanyuk, V.G., Kremneva, A.M., and Vyshinskaya, M.I., Metody otsenki kartofelya, ovoshchnykh i plodovykh kul’tur na ustoichivost’ k boleznyam: metodicheskie rekomendatsii (Methods of Disease Resistance Evaluation in Potato, Vegetable, and Fruit Cultures: Methodic Recommendations), Ivanyuk, V.G., Ed., Minsk: Bel-NII kartofelevodstva i plodoovoshchevodstva, 1987.

    Google Scholar 

  34. Ivanyuk, V.G., Banadysev, S.A., and Zhuromskii, G.K., Zashchita kartofelya ot boleznei, vreditelei i sornyakov (Protection of Potato against Diseases, Pests, and Weed), Minsk: Belprint, 2005.

    Google Scholar 

  35. Gough, M., Hancock, R.E.W., and Kelly, N.M., Antiendotoxin Activity of Cationic Peptide Antimicrobial Agents, Infect. Immun. 1996, vol. 64, pp. 4922–4927.

    CAS  PubMed  Google Scholar 

  36. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., GUS-Fusions: β-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants, EMBO J. 1987, vol. 6, no. 13, pp. 3901–3907.

    CAS  PubMed  Google Scholar 

  37. Gapeeva, T.A., Pundik, A.N., and Volotovskii, I.D., Vector Construction for Expression of Peptide Antimicrobial Genes in Plant Cells, Sovremennoe sostoyanie i perspektivy razvitiya mikrobiologii i biotekhnologii (Current State and Perspectives in Development of Microbiology and Biotechnology), Proc. 6th Int. Sci. Conf., Logvinov, I.P., Ed., Minsk 2008, vol. 2, pp. 130–133.

  38. Pugin, M.M., Sokolova, M.A., Shul’ga, O.A., and Skryabin, K.G., Effect of 5′-Leader of Potato Virus X (PVX) on Expression of the Gene for the Potato Y Virus Membrane Protein in Transgenic Solanum tuberosum Plants, Mol. Biol. (Moscow), 1994, vol. 28, no. 4, pp. 752–760.

    CAS  Google Scholar 

  39. Dietze, J, Blau, A, and Willmitzer, L, Agrobacterium-Mediated Transformation of Potato, Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., Eds., Berlin: Springer-Verlag, 1995, pp. 24–29.

    Google Scholar 

  40. Libiakova, G., Jurgensen, B., Palmgren, G., et al., Efficacy of an Intron-Containing Kanamycin Resistance Gene as a Selectable Marker in Plant Transformation, Plant Cell Rep. 2001, vol. 20, pp. 610–615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gapeeva.

Additional information

Original Russian Text © N.L. Vutto, T.A. Gapeeva, A.N. Pundik, T.G. Tretyakova, I.D. Volotovski, 2010, published in Genetika, 2010, Vol. 46, No. 12, pp. 1626–1634.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vutto, N.L., Gapeeva, T.A., Pundik, A.N. et al. Transgenic Belarussian-bred potato plants expressing the genes for antimicrobial peptides of the cecropin-melittin type. Russ J Genet 46, 1433–1439 (2010). https://doi.org/10.1134/S1022795410120057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795410120057

Keywords

Navigation