Advertisement

Russian Journal of Genetics

, Volume 46, Issue 12, pp 1433–1439 | Cite as

Transgenic Belarussian-bred potato plants expressing the genes for antimicrobial peptides of the cecropin-melittin type

  • N. L. Vutto
  • T. A. Gapeeva
  • A. N. Pundik
  • T. G. Tretyakova
  • I. D. Volotovski
Plant Genetics

Abstract

Binary vectors for Agrobacterium-mediated transformation were constructed to express the genes for antimicrobial peptides (APs) of the cectropin-melittin type under the control of the cauliflower mosaic virus 35S RNA promoter in plants. It was shown with Escherichia coli and Agrobacterium tumefaciens cells that the cassettes could be cloned in pBI121-based vectors with deletion of the β-D-glycuronidase gene only in the orientation opposite to that of the original vector. Transgenic potato plants were obtained using the Belarussian varieties Odyssey, Vetraz, and Scarb. Their cells expressed the MsrA1 or CEMA peptides of the cecropin-melittin type. The expression was shown to confer higher resistance to bacterial (Erwinia carotovora) infection and extremely high resistance to fungal (Phytophtora infestans and Alternarla solani) infections.

Keywords

Binary Vector Transgenic Potato Plant Stem Explants Timentin Alternaria Solani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brogden, K.A., Ackermann, M., McCray, P.B., et al., Antimicrobial Peptides in Animals and Their Role in Host Defences, Int. J. Antimicrob. Agents, 2003, vol. 22, no. 5, pp. 465–478.CrossRefPubMedGoogle Scholar
  2. 2.
    Hui, L., Leung, K., and Chen, H.M., The Combined Effects of Antibacterial Peptide Cecropin A and Anti-Cancer Agents on Leukemia Cells, Anticancer Res. 2002, vol. 22, no. 5, pp. 2811–2816.PubMedGoogle Scholar
  3. 3.
    Putsep, K., Normark, S., and Boman, H.G., The Origin of Cecropins; Implications from Synthetic Peptides Derived from Ribosomal Protein L1, FEBS Lett. 1999, vol. 451, pp. 249–252.CrossRefPubMedGoogle Scholar
  4. 4.
    Reddy, K.V., Yedery, R.D., and Aranha, C., Antimicrobial Peptides: Premises and Promises, Int. J. Antimicrob. Agents, 2004, vol. 24, no. 6, pp. 536–547.CrossRefPubMedGoogle Scholar
  5. 5.
    Brahmachary, M., Krishnan, S.P.T., Koh J.L.Y., and Khan, A.M., ANTIMIC: A Database of Antimicrobial Sequences, Nucleic Acids Res. 2004, vol. 32, database issue, pp. D586–D589.CrossRefPubMedGoogle Scholar
  6. 6.
    Kamysz, W., Okrj, M., and Lukasiak, J., Novel Properties of Antimicrobial Peptides, Acta Biochim. Pol. 2003, vol. 50, pp. 461–469.PubMedGoogle Scholar
  7. 7.
    Kokryakov, V.N., Koval’chuk, L.V., Aleshina, G.M., and Shamova, O.V., Cationic Antimicrobial Peptides as Molecular Immunity Factors: Multifunctionality, Zh. Mikrobiol. Epidemiol. Immunobiol. 2006, no. 2, pp. 98–105.Google Scholar
  8. 8.
    Hancock, R.E. and Diamond, G., The Role of Cationic Antimicrobial Peptides in Innate Host Defenses, Trends Microbiol. 2000, vol. 8, pp. 402–410.CrossRefPubMedGoogle Scholar
  9. 9.
    Perron, G.G., Zasloff, M., and Bell, G., Experimental Evolution of Resistance to an Antimicrobial Peptide, Proc. Biol. Sci. 2006, vol. 273, pp. 251–256.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee, K.H., Development of Short Antimicrobial Peptides Derived from Host Defense Peptides or by Combinatorial Libraries, Curr. Pharm. Des. 2002, vol. 8, no. 9, pp. 795–813.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma, J.K., C, Chikwamba, R., Sparrow, P., et al., Molecular Farming for New Drugs and Vaccines, EMBO Rep. 2005, vol. 6, pp. 593–599.CrossRefPubMedGoogle Scholar
  12. 12.
    Loose, C., Jensen, K., Rigoutsos, I., and Stephanopoulos, G., A Linguistic Model for the Rational Design of Antimicrobial Peptides, Nature, 2006, vol. 443, pp. 867–869.CrossRefPubMedGoogle Scholar
  13. 13.
    Boman, H.G., Wade, D., Boman, L.A., et al., Antibacterial and Antimalarial Properties of Peptides That Are Cecropin-Melittin Hybrids, FEBS Lett. 1989, vol. 259, no. 1, pp. 103–106.CrossRefPubMedGoogle Scholar
  14. 14.
    Friedrich, C., Scott, M.G., Karunaratne, N., et al., Salt-Resistant Alpha-Helical Cationic Antimicrobial Peptides, Antimicrob. Agents Chemother. 1999, vol. 43, no. 7, pp. 1542–1548.PubMedGoogle Scholar
  15. 15.
    Oh, H., Hedberg, M., Wade, D., and Edlund, C., Activities of Synthetic Hybrid Peptides against Anaerobic Bacteria: Aspects of Methodology and Stability, Antimicrob. Agents Chemother. 2000, vol. 44, no. 1, pp. 68–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Zerbini, E., Andreu, D., Tonarelli, G., and Sequeira, M.D., In-vitro Activity of Two Hybrid Synthetic Peptides Having Antimicrobial Activity against Mycobacteria, Rev. Argent. Microbiol. 2006, vol. 38, pp. 221–223.PubMedGoogle Scholar
  17. 17.
    Saugar, J.M., Rodrguez-Hernndez, M.J., de la Torre, B.G., et al., Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of Acinetobacter baumannii: Molecular Basis for the Differential Mechanisms of Action, Antimicrob. Agents Chemother. 2006, vol. 50, pp. 1251–1256.CrossRefPubMedGoogle Scholar
  18. 18.
    Nan, Y.H., Park, K.H., Jeon, Y.J., et al., Antimicrobial and Anti-Inflammatory Activities of a Leu/Lys-Rich Antimicrobial Peptide with Phe-Peptoid Residues, Protein Pept. Lett. 2007, vol. 14, pp. 1003–1007.CrossRefPubMedGoogle Scholar
  19. 19.
    Cavallarin, L., Andreu, D., and San Segundo, B., Cecropin A-Derived Peptides Are Potent Inhibitors of Fungal Plant Pathogens, Mol. Plant Microbe Interact. 1998, vol. 11, pp. 218–227.CrossRefPubMedGoogle Scholar
  20. 20.
    Yevtushenko, D.P., Romero, R., Forward, B.S., et al., Pathogen-Induced Expression of a Cecropin A-Melittin Antimicrobial Peptide Gene Confers Antifungal Resistance in Transgenic Tobacco, J. Exp. Bot. 2005, vol. 56, no. 416, pp. 1685–1695.CrossRefPubMedGoogle Scholar
  21. 21.
    Osusky, M., Zhou, G., Osuska, L., et al., Transgenic Plants Expressing Cationic Peptide Chimeras Exhibit Broad-Spectrum Resistance to Phytopathogens, Nat. Biotech. 2000, vol. 18, pp. 1162–1166.CrossRefGoogle Scholar
  22. 22.
    Hancock, R.E.W., Brown, M.H., and Piers, K., US Patent Application Serial no. 07.913.492, 1992.Google Scholar
  23. 23.
    Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 Phage Cloning Vectors and Host Strains: Nucleotide Sequences of the M13mp18 and pUC19 Vectors, Gene, 1985, vol. 33, pp. 103–119.CrossRefPubMedGoogle Scholar
  24. 24.
    Sambrook, J.W., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.Google Scholar
  25. 25.
    Croy, R.R.D., Plant Molecular Biology: LabFax, Oxford: BIOS Sci., 1993.Google Scholar
  26. 26.
    Lazo, G.R., Stein, P.A., and Ludwig, R.A., A DNA Transformation-Competent Arabidopsis Genomic Library in Agrobacterium, Biotechnology, 1991, vol. 9, pp. 963–967.CrossRefPubMedGoogle Scholar
  27. 27.
    Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant. 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  28. 28.
    Beaujean, A., Sangwan, R.S., Lecardonnel, A., and Sangwan-Norreel, B.S., Agrobacterium Mediated Transformation of Three Economically Important Potato Cultivars Using Sliced Internodal Explants: An Efficient Protocol of Transformation, J. Exp. Bot. 1998, vol. 49, no. 326, pp. 1589–1595.CrossRefGoogle Scholar
  29. 29.
    Draper, J, Scott, R.H, and Hamil, J, Transformation of Dicotyledonous Plant Cells Using Ti plasmid of Agrobacterium tumefaciens and Ri plasmid of A. rhizogenes, Plant Genetic Transformation and Gene Expression: A Laboratory Manual, Draper, J., Scott, R., Armitage, P., and Walden, R., Eds., Oxford: Blackwell, 1988, pp. 69–160.Google Scholar
  30. 30.
    Bradford, M.M., A Rapid and Sensitive for the Quantitation of Microgram Quantitites of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem. 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  31. 31.
    Hultmark, D., Engstrm, A., and Andersson, K., Insect Immunity: Attacins, a Family of Antibacterial Proteins from Hyalophora cecropia, EMBO J. 1983, vol. 2, no. 4, pp. 571–576.PubMedGoogle Scholar
  32. 32.
    Samakovlis, C., Kimbrell, D.A., Kylsten, P., et al., The Immune Response in Drosophila: Pattern of Cecropin Expression and Biological Activity, EMBO J. 1990, vol. 9, no. 9, pp. 2969–2976.PubMedGoogle Scholar
  33. 33.
    Ivanyuk, V.G., Kremneva, A.M., and Vyshinskaya, M.I., Metody otsenki kartofelya, ovoshchnykh i plodovykh kul’tur na ustoichivost’ k boleznyam: metodicheskie rekomendatsii (Methods of Disease Resistance Evaluation in Potato, Vegetable, and Fruit Cultures: Methodic Recommendations), Ivanyuk, V.G., Ed., Minsk: Bel-NII kartofelevodstva i plodoovoshchevodstva, 1987.Google Scholar
  34. 34.
    Ivanyuk, V.G., Banadysev, S.A., and Zhuromskii, G.K., Zashchita kartofelya ot boleznei, vreditelei i sornyakov (Protection of Potato against Diseases, Pests, and Weed), Minsk: Belprint, 2005.Google Scholar
  35. 35.
    Gough, M., Hancock, R.E.W., and Kelly, N.M., Antiendotoxin Activity of Cationic Peptide Antimicrobial Agents, Infect. Immun. 1996, vol. 64, pp. 4922–4927.PubMedGoogle Scholar
  36. 36.
    Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., GUS-Fusions: β-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants, EMBO J. 1987, vol. 6, no. 13, pp. 3901–3907.PubMedGoogle Scholar
  37. 37.
    Gapeeva, T.A., Pundik, A.N., and Volotovskii, I.D., Vector Construction for Expression of Peptide Antimicrobial Genes in Plant Cells, Sovremennoe sostoyanie i perspektivy razvitiya mikrobiologii i biotekhnologii (Current State and Perspectives in Development of Microbiology and Biotechnology), Proc. 6th Int. Sci. Conf., Logvinov, I.P., Ed., Minsk 2008, vol. 2, pp. 130–133.Google Scholar
  38. 38.
    Pugin, M.M., Sokolova, M.A., Shul’ga, O.A., and Skryabin, K.G., Effect of 5′-Leader of Potato Virus X (PVX) on Expression of the Gene for the Potato Y Virus Membrane Protein in Transgenic Solanum tuberosum Plants, Mol. Biol. (Moscow), 1994, vol. 28, no. 4, pp. 752–760.Google Scholar
  39. 39.
    Dietze, J, Blau, A, and Willmitzer, L, Agrobacterium-Mediated Transformation of Potato, Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., Eds., Berlin: Springer-Verlag, 1995, pp. 24–29.Google Scholar
  40. 40.
    Libiakova, G., Jurgensen, B., Palmgren, G., et al., Efficacy of an Intron-Containing Kanamycin Resistance Gene as a Selectable Marker in Plant Transformation, Plant Cell Rep. 2001, vol. 20, pp. 610–615.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. L. Vutto
    • 1
  • T. A. Gapeeva
    • 1
  • A. N. Pundik
    • 1
  • T. G. Tretyakova
    • 1
  • I. D. Volotovski
    • 1
  1. 1.Institute of Biophysics and Cell EngineeringNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations