Russian Journal of Genetics

, Volume 46, Issue 11, pp 1295–1305 | Cite as

A new yeast strain for brewery: Properties and advantages

  • S. G. Davydenko
  • B. F. Yarovoy
  • V. P. Stepanova
  • D. V. Afonin
  • B. E. Batashov
  • A. T. Dedegkaev
Genetics of Microorganisms
  • 182 Downloads

Abstract

Beer is a natural product and is a multicomponent system that has both positive and negative consumer properties. Organoleptical off-flavors of beer are difficult to eliminate. Yeasts are the main active component of the system. The relationship between beer quality and yeast usage is well known. New industrial strains for brewery are continuously developed. An industrial yeast Saccharomyces cerevisiae strain was obtained and showed high technological properties, including efficient fermentation, a reduced production of sulfur hydrate, and a high diacetyl reduction rate. The advantages made it possible to develop new brands of beer and nonalcoholic products. The commercial use of the strain was patented. The strain was deposited in the Russian Collection of Industrial Microorganisms.

Keywords

Ethanol Production Yeast Strain Wine Yeast Industrial Strain Brewing Strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dequin, S., The Potential of Genetic Engineering for Improving Brewing, Wine-Making and Baking Yeast, Appl. Microbiol. Biotechnol., vol. 56, pp. 577–588.Google Scholar
  2. 2.
    Naumova, E.S., Bulat, S.A., Mironenko, N.V., and Naumov, G.I., Differentiation of Six Sibling Species in the Saccharomyces sensu stricto Complex by Multilocus Enzyme Electrophoresis and UP-PCR Analysis, Antonie van Leeuwenhoek, 2003, vol. 83, pp. 155–166.CrossRefPubMedGoogle Scholar
  3. 3.
    Nilsson-Tillgren, T., Gjermanse, C., Kidland-Brandt, M.C., et al., Genetic Differences between Saccharomyces carlsbergensis and Saccharomyces cerevisiae: Analysis of Chromosome III by Single Chromosome Transfer, Carlsberg Res. Commun., 1981, vol. 46, pp. 65–76.CrossRefGoogle Scholar
  4. 4.
    Nilsson-Tillgren, T., Petersen, J.G.L., Holmberg, S., and Kielland-Brandt, M.C., Transfer of Chromosome III during kar Mediated Cytoduction in Yeast, Carlsberg Res. Commun., 1980, vol. 45, pp. 113–117.CrossRefGoogle Scholar
  5. 5.
    Gjermansen, C., Nilsson-Tillgren, T., Petersen, J.G., et al., Towards Diacetyl-less Brewers’ Yeast: Influence of ilv2 and ilv5 Mutations, J. Basic Microbiol., 1988, vol. 28, pp. 175–183.CrossRefPubMedGoogle Scholar
  6. 6.
    Tornai-Lehoczki, J. and Dlauchy, D., Delimination of Brewing Yeast Strains Using Different Molecular Techniques, Int. J. Food Microbiol., 2000, vol. 62, pp. 37–45.CrossRefPubMedGoogle Scholar
  7. 7.
    Smits, H.P., Hauf, J., Müller, S., et al., Simultaneous Overexpression of Enzymes of the Lower Part of Glycolysis Can Enhance the Fermentative Capacity of Saccharomyces cerevisiae, Yeast, 2000, vol. 16, pp. 1325–1334.CrossRefGoogle Scholar
  8. 8.
    Steyn, J.C. and Pretorius, I.S., Co-Expression of Saccharomyces diastaticus Glucoamylase-Encoding Gene and a Bacillus amyloliquefaciens α-Amylase-Encoding Gene in Saccharomyces cerevisiae, Gene, 1991, vol. 100, pp. 85–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Penttilä, M., Suihko, M.L., Lehtinen, U., et al., Construction of Brewer’ Yeasts Secreting Fungal Endo-Glucanases, Curr. Genet., 1987, vol. 12, pp. 413–420.CrossRefGoogle Scholar
  10. 10.
    Penttilé, L., André, L., Saloheimo, M., et al., Expression of Two Trichoderms reesei Endoglucanases in the Yeast Saccharomyces cerevisiae, Yeast, 1987, vol. 3, pp. 175–185.CrossRefGoogle Scholar
  11. 11.
    Priest, F.G. and Campbell, I., Brewing Microbiology, Chapman and Hall, 2003.Google Scholar
  12. 12.
    Simpson, W.J., A Rough Guide to Beer Flavour Assessment: 1. Beer Flavours, Assessors and Standards, Brewers’ Guardian, 1997, pp. 25–29.Google Scholar
  13. 13.
    Romano, P. and Suzzi, G., Minirewiew: Origin and Production of Acetoin during Wine Yeast Fermentation, Appl. Environ. Microbiol., 1996, vol. 62, no. 2, pp. 309–315.PubMedGoogle Scholar
  14. 14.
    Tezuka, H., Mori, T., Okumura, Y., et al., Cloninng of a Gene Suppressing Hydrogen Sulfite Production by Saccharomyces cerevisiae and Its Expression in a Brewing Yeast, J. Am. Soc. Brew. Chem., 1992, vol. 50, pp. 130–133.Google Scholar
  15. 15.
    Omura, F., Shibano, Y., Fukui, N., and Nakatani, K., Reduction of Hydrogen Sulfide Production in Brewing Yeast by Constitutive Expression of MET25 Gene, J. Am. Soc. Brew. Chem., 1995, vol. 53, pp. 58–62.Google Scholar
  16. 16.
    Hansen, J. and Kielland-Brandt, M., Inactivation of MET10 in Brewer’s Yeast Specifically Increases SO2 Formation during Beer Production, Nat. Biotechnol., 1996, vol. 14, pp. 1587–1589.CrossRefPubMedGoogle Scholar
  17. 17.
    Hansen, J. and Kielland-Brandt, M., Inactivation of MET2 in Brewer’s Yeast Increases the Level of Sulfite in Beer, J. Biotechnol., 1996, vol. 50, pp. 75–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Attfield, P.V., Stress Tolerance: The Key to Effective Strains of Industrial Baker’s Yeast, Nat. Biotechnol., 1997, vol. 15, pp. 1351–1357.CrossRefPubMedGoogle Scholar
  19. 19.
    DeRisi, J.L., Iyer, V.R., and Brown, P.O., Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale, Science, 1997, vol. 278, pp. 680–686.CrossRefPubMedGoogle Scholar
  20. 20.
    Zakharov, I.A., Kozhin, S.A., et al., Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods in Yeasts-Saccharomycetes Genetics), Leningrad: Nauka, 1984.Google Scholar
  21. 21.
    Guthrie, C. and Fink, G., Guide to Yeast Genetics and Molecular Biology, Acad. Press, 1991.Google Scholar
  22. 22.
    Lin, Y., Formulation and Testing of Cupric Sulfate Medium for Wild Yeast Detection, J. Inst. Brew., 1981, vol. 87, pp. 151–154.Google Scholar
  23. 23.
    Taylor, G.T. and Marsh, A.S., MYGP+Copper, a Medium That Detects Both Saccharomyces and Non-Saccharomyces Wild Yeast in the Presence of Culture Yeast, J. Inst. Brew., 1984, vol. 90, pp. 134–145.Google Scholar
  24. 24.
    Fogel, S., Welch, J.W., and Malony, D.H., The Molecular Genetic of Copper Resistance in Saccharomyces cerevisiae—a Paradigm for Non-Conventional Yeast, J. Basic Microbiol., 1988, vol. 28, pp. 147–160.CrossRefPubMedGoogle Scholar
  25. 25.
    Haukeli, A.D. and Lie, S., The Influence of α-Acetohydroxy Acids on the Determination of Vicinal Diketons in Beer during Fermentation, J. Inst. Brew., 1977, vol. 77, pp. 538–543.Google Scholar
  26. 26.
    Analytica EBC. Vicinal Diketones in Beer: Gas Chromatographic, 2004, Method 9.24.2.Google Scholar
  27. 27.
    Analytica EBC. Dimethyl Sulfate in Beer: Gas Chromatographic, 2004, Method 9.39.Google Scholar
  28. 28.
    Analytica EBC. Fermentable Carbohydrates in Beer by HPLC, 2004, Method 9.27.Google Scholar
  29. 29.
    Analytica-EBC. Real Degree of Fermentation of Beer, 2004, Method 9.5.Google Scholar
  30. 30.
    Carle, G.F. and Olson, M.V., Separation of Chromosomal DNA Molecules from Yeast by Orthogonal-Field-Alternation Gel Electrophoresis, Nucleic Acids Res., 1984, vol. 12, no. 14, pp. 5647–5664.CrossRefPubMedGoogle Scholar
  31. 31.
    Davydenko, S.G., et al., Chromosome Polymorphism in the Yeast Saccharomyces, Russ. J. Genet., 1990, vol. 26, no. 12, pp. 2135–2146.Google Scholar
  32. 32.
    Urbakh, V.Yu., Matematicheskaya statistika dlya biologov i medikov (Mathematical Statistics for Biologists and Medical Professionals), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  33. 33.
    Repnevskaya, M.V., Karpova, T.S., and Inge-Vechtomov, S.G., Hybridization and Cytoduction among Yeast Cells of the Same Mating Type, Curr. Genet., 1987, vol. 12, pp. 511–517.CrossRefGoogle Scholar
  34. 34.
    Steyn, J.C. and Pretorius, I.S., Co-Expression of Saccharomyces diastaticus Glucoamylase-Encoding Gene and a Bacillus amyloliquefaciens α-Amylase-Encoding Gene in Saccharomyces cerevisiae, Gene, 1991, vol. 100, pp. 85–93.CrossRefPubMedGoogle Scholar
  35. 35.
    Naumov, G.I., Naumova, E.S., Masneuf, I., et al., Natural Polyploidization of Some Cultured Yeast Saccharomyces sensu stricto: Auto- and Allotetraploidy, Syst. Appl. Microbiol., 2000, vol. 23, no. 3, pp. 442–449.PubMedGoogle Scholar
  36. 36.
    Bidenne, C., Blondin, B., Dequin, S., and Vezinhet, F., Analysis of Chromosomal DNA Polymorphism of Wine Yeast Strains of Saccharomyces cerevisiae, Curr. Genet., 1992, vol. 22, pp. 1–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Jimenez, J. and Benitaz, T., Genetic Analysis of Highly Ethanol Tolerant Wine Yeast, Curr. Genet., 1987, vol. 12, no. 6, pp. 412–429.CrossRefGoogle Scholar
  38. 38.
    Davydenko, S.G., Afonin, D.B., Dedegkaev, A.T., et al., RF Patent 2340666, 2008.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. G. Davydenko
    • 1
  • B. F. Yarovoy
    • 2
  • V. P. Stepanova
    • 2
  • D. V. Afonin
    • 1
  • B. E. Batashov
    • 1
  • A. T. Dedegkaev
    • 1
  1. 1.JSC Baltika Breweries CompanySt. PetersburgRussia
  2. 2.Konstantinov St. Petersburg Institute of Nuclear PhysicsRussian Academy of SciencesGatchina, Leningrad OblastRussia

Personalised recommendations