Russian Journal of Genetics

, Volume 46, Issue 11, pp 1290–1294

Analysis of the inheritance patterns of 5′-truncated copies of the German cockroach R2 retroposons in individual crosses

Molecular Genetics

Abstract

The inheritance patterns of the 5′-truncated copies of R2 retroposons were analyzed in individual crosses of the German cockroach. The recombination level within the cluster of ribosomal RNA genes was determined. It was demonstrated that only the frequencies of individual variants of 5′-truncated retroposon copies are appropriate for population analysis rather than the patterns characterizing individual X chromosomes. The methodical approach used in the work is convenient for studying the genetic variation in ribosomal DNA multigene families.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenstreich, D.L., Eggleston, P., Kattan, M., et al., The Role of Cockroach Allergy and Exposure to Cockroach Allergen in Causing Morbidity among Inner-City Children with Asthma, New England J. Med., 1997, vol. 336, pp. 1356–1363.CrossRefGoogle Scholar
  2. 2.
    Cloarec, A., Rivault, C., Fontaine, F., and Le Guyader, A., Cockroaches as Carriers of Bacteria in Multi-Family Dwellings, Epidem. Infect., 1992, vol. 109, pp. 483–490.CrossRefGoogle Scholar
  3. 3.
    Rivault, C., Cloarec, A., and Le Guyader, A., Bacterial Load of Cockroaches in Relation to Urban Environment, Epidem. Infec., 1993, vol. 110, pp. 317–325.CrossRefGoogle Scholar
  4. 4.
    Zurek, L. and Schal, C., Evaluation of the German Cockroach, Blattella germanica, as a Vector of Verotoxigenic Escherichia coli F18 in Confined Swine Production, Vet. Microbiol., 2004, vol. 101, pp. 263–267.CrossRefPubMedGoogle Scholar
  5. 5.
    Hampson, B.C and Steiner, W.W.M., An Electrophoretic Analysis of Population Structure and Gene Diversity in the German Cockroach, Recent Developments in the Genetics of Insect Disease Vectors, Steiner, W.W.M., Ed., Champaign: Stipes, 1982, pp. 648–663.Google Scholar
  6. 6.
    Cloarec, A., Rivault, C., and Cariou, M.L., Genetic Population Structure of the German Cockroach, Blattella germanica: Absence of Geographical Variation, Biofutur, 1999, vol. 92, pp. 311–319.Google Scholar
  7. 7.
    Jobet, E., Durand, P., Langand, J., et al., Comparative Genetic Diversity of Parasites and Their Host: Population Structure of an Urban Cockroach and Its Haplodiploid Parasite (Oxyuroid Nematode), Mol. Ecol., 2000, vol. 9, pp. 481–486.CrossRefPubMedGoogle Scholar
  8. 8.
    Mukha, D.V., Sidorenko, A.P., Lazebnaya, I.V., et al., Analysis of Intraspecies Polymorphism in the Ribosomal DNA Cluster of the Cockroach Blattella germanica, Insect Mol. Biol., 2000, vol. 9, pp. 217–222.CrossRefPubMedGoogle Scholar
  9. 9.
    Booth, W., Bogdanowicz, S.M, Prodöhl, P.A, et al., Identification and Characterization of 10 Polymorphic Microsatellite Loci in the German Cockroach, Blattella germanica, Mol. Ecol. Notes, 2007, vol. 7, pp. 648–650.CrossRefGoogle Scholar
  10. 10.
    Paule, M.R. and Lofquist, A.K., Organization and Expression of Eukaryotic Ribosomal RNA Genes, Ribosomal RNA-Structure, Evolution, Processing, and Function in Protein Biosynthesis, Zimmerman, R.A. and Dahlberg, A.E., Eds., New York: CRC Press, 1996, pp. 395–420.Google Scholar
  11. 11.
    Mukha, D., Kagramanova, A., Lazebnaya, I., et al., Intraspecific Variation and Population Structure of the German Cockroach, Blattella germanica, Revealed with RFLP Analysis of the Nontranscribed Spacer Region of Ribosomal DNA, Med. Veterinary Entomol., 2007, vol. 21, pp. 132–140.CrossRefGoogle Scholar
  12. 12.
    Kagramanova, A.S., Korolev, A.L., Shal, K., and Mukha, D.V., Length Polymorphism of Integrated Copies of R1 and R2 Retrotransposons in the German Cockroach (Blattella germanica) as a Potential Marker for Population and Phylogenetic Studies, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 501–506.CrossRefGoogle Scholar
  13. 13.
    Kagramanova, A.S., Kapelinskaya, T.V., Korolev, A.L., and Mukha, D.V., R1 and R2 Retrotransposons of German Cockroach Blatella germanica: A Comparative Study of 5′-Truncated Copies Integrated into the Genome, Mol. Biol. (Moscow), 2007, vol. 41, pp. 546–553.CrossRefGoogle Scholar
  14. 14.
    Burke, W.D., Eickbush, D.G., Xiong, Y., et al., Sequence Relationship of Retrotransposable Elements R1 and R2 within and between Divergent Insect Species, Mol. Biol. Evol., 1993, vol. 10, pp. 163–185.PubMedGoogle Scholar
  15. 15.
    Burke, W.D., Malik, H.S., Lathe, W.C., and Eickbush, T.H., Are Retrotransposons Long-Term Hitchhikers?, Nature, 1998, vol. 392, pp. 141–142.CrossRefPubMedGoogle Scholar
  16. 16.
    Perez-Gonzalez, C.E. and Eickbush, T.H., Dynamics of R1 and R2 Elements in the rDNA Locus of Drosophila simulans, Genetics, 2001, vol. 158, pp. 1557–1567.PubMedGoogle Scholar
  17. 17.
    George, J.A., Burke, W.D., and Eickbush, T.H., Analysis of the 5′ Junctions of R2 Insertions with the 28S Gene: Implications for Non-LTR Retrotransposition, Genetics, 1996, vol. 142, pp. 853–863.PubMedGoogle Scholar
  18. 18.
    Finnegan, D.J., Transposable Elements: How Non-LTR Retrotransposons Do It, Curr. Biol., 1997, vol. 7, pp. 245–248.CrossRefGoogle Scholar
  19. 19.
    Fujimoto, H., Hirukawa, Y., Tani, H., et al., Integration of the 5′ End of the Retrotransposon, R2Bm, Can Be Complemented by Homologous Recombination, Nucleic Acids Res., 2004, vol. 32, pp. 1555–1565.CrossRefPubMedGoogle Scholar
  20. 20.
    Christensen, S.M. and Eickbush, T.H., R2 Target-Primed Reverse Transcription: Ordered Cleavage and Polymerization Steps by Protein Subunits Asymmetrically Bound to the Target DNA, Mol. Cell. Biol., 2005, vol. 25, pp. 6617–6628.CrossRefPubMedGoogle Scholar
  21. 21.
    Christensen, S.M., Bibillo, A., and Eickbush, T.H., Role of the Bombyx mori R2 Element N-Terminal Domain in the Target-Primed Reverse Transcription (TPRT) Reaction, Nucleic Acids Res., 2005, vol. 33, pp. 6461–6468.CrossRefPubMedGoogle Scholar
  22. 22.
    Stage, D.E. and Eickbush, T.H., Origin of Nascent Lineages and the Mechanisms Used to Prime Second-Strand DNA Synthesis in the R1 and R2 Retrotransposons of Drosophila, Genome Biol., 2009, vol. 10, no. 5, p. R49.CrossRefPubMedGoogle Scholar
  23. 23.
    Cave, M.D., Absence of rDNA Amplification in the Uninucleolate Oocyte of the Cockroach Blattella germanica (Orthoptera: Blattidae), J. Cell Biol., 1976, vol. 71, pp. 49–58.CrossRefPubMedGoogle Scholar
  24. 24.
    Ross, M.H., Cytological Studies of Blattella germanica and Blattella asahinai: 1. A Possible Genetic Basis of Interspecific Divergence, Genome, 1988, vol. 30, pp. 812–818.Google Scholar
  25. 25.
    Nei, M. and Rooney, A.P., Concerted and Birth-and-Death Evolution of Multigene Families, Ann. Rev. Genet., 2005, vol. 39, pp. 121–152.CrossRefPubMedGoogle Scholar
  26. 26.
    Eickbush, T.H. and Eickbush, D.G., Finely Orchestrated Movements: Evolution of the Ribosomal RNA Genes, Genetics, 2007, vol. 175, pp. 477–485.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Kagramanova
    • 1
  • A. L. Korolev
    • 1
  • D. V. Mukha
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations