Russian Journal of Genetics

, Volume 46, Issue 8, pp 899–916 | Cite as

Expanding genetic code: Amino acids 21 and 22, selenocysteine and pyrrolysine

Reviews and Theoretical Articles

Abstract

The discovery of two atypical amino acids, selenocysteine and pyrrolysine, in the genetic code is discussed. These findings have expanded our understanding of the genetic code, since the repertoire of amino acids in the genetic code was supplemented by two novel ones, in addition of the standard 20 amino acids. Current views on specific mechanisms of selenocysteine insertion in forming selenoproteins are considered, as well as the results of studies of new translational components involved in biosynthesis and incorporation of selenocysteine at different stages of translation. Similarity in the strategies of decoding UGA and UAG as codons for respectively selenocysteine and pyrrolysine is discussed. The review also presents evidence on the medical and biological role of selenium and selenoproteins containing selenocysteine as the main biological form of selenium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fox, T.D., Natural Variation in the Genetic Code, Ann. Rev. Genet., 1987, vol. 21, pp. 67–91.PubMedGoogle Scholar
  2. 2.
    Seilhammer, J.J. and Cummings, D.J., Altered Genetic Code in Paramecium tetraurelia Mitochondria: Possible Evolutionary Trends, Mol. Gen. Genet., 1982, vol. 187, pp. 236–239.CrossRefGoogle Scholar
  3. 3.
    Osawa, S. and Jukes, T.H., Codon Reassignment (Codon Capture) in Evolution, J. Mol. Evol., 1989, vol. 28, pp. 271–278.PubMedCrossRefGoogle Scholar
  4. 4.
    Caron, F., Eukaryotic Codes, Experientia, 1990, vol. 46, pp. 1106–1117.PubMedCrossRefGoogle Scholar
  5. 5.
    Lukashenko, N.P. and Rybakova, Z.I., Struktura i funktsiya genomov prosteishikh (Structure and Function of Protozoa Genomes), Moscow: Nauka, 1991.Google Scholar
  6. 6.
    Osawa, S., Evolution of Genetic Code, Oxford: Oxford Univ. Press, 1995.Google Scholar
  7. 7.
    Chambers, J., Frampton, J., Goldfarb, P., et al., The Structure of the Mouse Glutathione Peroxidase Gene: The Selenocysteine in the Active Site Is Encoded by the “Termination” Codon TGA, EMBO J., 1986, vol. 5, pp. 1221–1227.PubMedGoogle Scholar
  8. 8.
    Zinoni, F., Birkmann, A., Stadtman, T.C., and Bock, A., Nucleotide Sequence and Expression of the Selenocysteine-Containing Polypeptide of Formate-Dehydrogenase(Formate-Hydrogen-Lyase-Linked) from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, pp. 4650–4654.PubMedCrossRefGoogle Scholar
  9. 9.
    Srinivasan, G., James, C.M., and Krzycki, J.A., Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA, Science, 2002, vol. 296, pp. 1459–1461.PubMedCrossRefGoogle Scholar
  10. 10.
    Lukashenko, N.P., Evolutionary Deviations from Universal Code among Infusorians, Russ. J. Genet., 2009, vol. 45, no. 4, pp. 437–448.CrossRefGoogle Scholar
  11. 10.a.
    Combs, G.F. and Combs, S.B., The Role of Selenium in Nutrition, Orlando: Acad. Press, 1986.Google Scholar
  12. 11.
    Burk, R.F., Foreword, Selenium: Its Molecular Biology and Role in Human Health, Boston: Kluwer, 2001, pp. XV–XVI.Google Scholar
  13. 12.
    Pinsent, J., The Need for Selenite and Molybdate in the Formation of Formic Dehydrogenase by Members of the Coliaerogenes Group of Bacteria, Biochem. J., 1954, vol. 57, pp. 10–16.PubMedGoogle Scholar
  14. 13.
    Schwartz, K. and Foltz, C.M., Selenium as an Integral Part of Factor 3 against Dietary Necrotic Liver Degeneration, J. Am. Chem. Soc., 1957, vol. 79, pp. 3292–3293.CrossRefGoogle Scholar
  15. 14.
    Patterson, E.L., Milstrey, R., and Stokstad, E.L.R., Effect of Selenium in Preventing Exudative Diathesis in Chicks, Proc. Soc. Exp. Biol. Med., 1957, vol. 95, pp. 617–620.PubMedGoogle Scholar
  16. 15.
    Cone, J.E., Martin del Rio, R.M., Davis J.N., and Stadtman T.C. Chemical Characterization of the Organoselenium Moiety, Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, pp. 2659–2663.PubMedCrossRefGoogle Scholar
  17. 16.
    Forstrom, J.W., Zakowski, J.J., and Tappel, Al.L., Identification of the Catalytic Site of Rat Liver Glutathione Peroxidase as Selenocysteine, Biochemistry, 1978, vol. 17, pp. 2639–2644.PubMedCrossRefGoogle Scholar
  18. 17.
    Ursini, F., Heim, S., Kiess, M., et al., Dual Function of the Selenoprotein PHGPx during Sperm Maturation, Science, 1999, vol. 285, pp. 1393–1396.PubMedCrossRefGoogle Scholar
  19. 18.
    Pfeifer, H., Conrad, M., Roethlein, D., et al., Identification of a Specific Sperm Nuclei Selenoenzyme Necessary for Protamine Thiol Cross-Linking during Sperm Maturation, FASEB J., 2001, vol. 15, pp. 1236–1238.PubMedCrossRefGoogle Scholar
  20. 19.
    Moghadaszadeh, B., Petit, N., Jailland, C., et al., Mutations in SEPN1 Cause Congenital Muscular Dystrophy with Spinal Rigidity and Restrictive Respiratory Syndrome, Nat. Genet., 2001, vol. 29, pp. 17–18.PubMedCrossRefGoogle Scholar
  21. 20.
    Combs, G.F., Jr., Nutrition and Cancer Prevention, Moon, T. and Micozzi, M., Eds., New York: Mareel. Dekker, 1989.Google Scholar
  22. 21.
    Navarro-Alarcon, M., Lopez-G de la Serrana, H., Perez-Valero, V., et al., Serum and Urine Selenium Concentration as Indicators of Body Status in Patients with Diabetes Mellitus, Sci. Total Environ., 1999, vol. 228, pp. 79–85.PubMedCrossRefGoogle Scholar
  23. 22.
    Combs, G.F., Jr, and London, J., Selenium as a Cancer Preventive Agent, Selenium: Its Molecular Biology and Role in Human Health, Boston: Kluwer., 2001, pp. 205–217.Google Scholar
  24. 23.
    Shamberger, R.J. and Willis, C.E., Selenium Distribution and Human Cancer Mortality, Clin. Lab. Sci., 1971, vol. 2, pp. 211–221.CrossRefGoogle Scholar
  25. 24.
    Germain, D.L.St., Selenium, Deiodinases and Endocrine Function, Selenium: Its Molecular Biology and Role in Human Health, Boston: Kluwer, 2001, pp. 189–202.Google Scholar
  26. 25.
    Rayman, M.P., The Importance of Selenium to Human Health, Lancet, 2000, vol. 356, pp. 233–241.PubMedCrossRefGoogle Scholar
  27. 26.
    Ip, C. and Ganther, H.E., Comparison of Selenium and Sulfur Analogs in Cancer Prevention, Carcinogenesis, 1992, vol. 13, pp. 1167–1170.PubMedCrossRefGoogle Scholar
  28. 27.
    Beck, M.A. and Levander, O.A., Dietary Oxidative Stress and the Potentiation of Viral Infection, Annu. Rev. Nutr., 1998, vol. 18, pp. 93–116.PubMedCrossRefGoogle Scholar
  29. 28.
    Beck, M.A., Nutritionally Induced Oxidative Stress: Effect on Viral Disease, Am. J. Clin. Nutr., 2000, vol. 71, pp. 1676–1679.Google Scholar
  30. 29.
    Beck, M.A., Selenium as an Antiviral Agent, Selenium: Its Molecular Biology and Role in Human Health, Boston: Kluwer, 2001, pp. 235–245.Google Scholar
  31. 30.
    Baum, M.K., Campa, A., Migueth-Burbano, M.J., et al., Role of Selenium in HIV/AIDS, See Ref., 2001, pp. 247–256.Google Scholar
  32. 31.
    Constans, J., Pellegrin, J.-L., Sergeant, C., et al., Serum Selenium Predicts Outcome in HIV Infection, J. Acquir.: Imm. Def. Syndr. Hum., Retrovirol. (JAIDS), 1995, vol. 10, p. 392.CrossRefGoogle Scholar
  33. 32.
    Look, M.P., Rockstroh, J.K., Rao, G.S., et al., Serum Selenium, Plasma Glutathione (GSH) and Erythrocyte Glutathione Peroxidase (GSH-Px)-Levels in Asymptomatic Versus Symptomatic Human Immunodeficiency Virus-1 (HIV-1)-Infection, Eur. J. Clin. Nutr., 1997, vol. 51, pp. 266–272.PubMedCrossRefGoogle Scholar
  34. 33.
    Hatfield, D.L., Introduction, See Ref., 2001, pp. 1–4.Google Scholar
  35. 34.
    Gladyshev, V.N., Khangulov, S.V., and Stadtman, T.C., Nicotinic Acid Hydroxylase from Clostridium barkeri: Electron Paramagnetic Resonance Studies Show That Selenium Is Coordinated with Molybdenum in the Catalytically Active Selenium-Dependent Enzyme, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 232–236.PubMedCrossRefGoogle Scholar
  36. 35.
    Hatfield, D.L, Gladyshev, V.N, Park, J.M, et al., Biosynthesis of Selenocysteine and Its Incorporation into Protein as 21st Amino Acid, Comprehensive Natural Products Chemistry, Kelly, J.W., Ed., Oxford: Elsevier, 1999, pp. 353–380.CrossRefGoogle Scholar
  37. 36.
    Stadtman, T.C., Selenium-Dependent Enzymes, Annu. Rev. Biochem., 1980, vol. 49, pp. 93–110.PubMedCrossRefGoogle Scholar
  38. 37.
    Zinoni, F., Birkmann, A., Leinfelder, W., and Böck, A., Cotranslational Insertion of Selenocysteine into Formate Dehydrogenase from Escherichia coli Directed by a UGA Codon, Proc. Natl. Acad. Sci. U.S.A., 1987, vol. 84, pp. 3156–3160.PubMedCrossRefGoogle Scholar
  39. 38.
    Leinfelder, W., Stadtman, T.C., and Böck, A., Occurence in vivo of Selenocysteyl-tRNA (SER UGA) in Escherichia coli: Effect of sel Mutations, J. Biol. Chem., 1989, vol. 264, pp. 9720–9723.PubMedGoogle Scholar
  40. 39.
    Zinoni, F., Heider, J., and Böck, A., Features of the Formate Dehydrogenase mRNA Necessary for Decoding of the UGA Codon as Selenocysteine, Proc. Natl. Acad. Sci. U.S.A., 1990, vol. 87, pp. 4660–4664.PubMedCrossRefGoogle Scholar
  41. 40.
    Müllenbach, G.T., Tabrizi, A., Irvine, B.D., et al., Selenocysteine’s Mechanisms of Incorporation and Evolution Revealed in cDNAs of Three Glutathione Peroxidases, Protein Eng., 1988, vol. 2, pp. 239–246.PubMedCrossRefGoogle Scholar
  42. 41.
    Hatfield, D.L., Diamond, A.M., and Dudock, B., Opal Suppressor Serine tRNAs from Bovine Liver Form Phosphoseryl-tRNA, Proc. Natl. Acad. Sci. U.S.A., 1982, vol. 79, pp. 6215–6219.PubMedCrossRefGoogle Scholar
  43. 42.
    Hatfield, D.L. and Gladyshev, V.N., How Selenium Has Altered Our Understanding of the Genetic Code, Mol. Cell. Biol., 2002, vol. 22, pp. 3565–3576.PubMedCrossRefGoogle Scholar
  44. 43.
    Böck, A., Forchhammer, K., Heider, J., et al., Selenocysteine: The 21st Amino Acid, Mol. Microbiol., 1991, vol. 5, pp. 515–520.PubMedCrossRefGoogle Scholar
  45. 44.
    Böck, A., Forchhammer, K., Heider, J., and Baron, C., Selenoprotein Synthesis: An Expansion of the Genetic Code, Trends Biochem. Sci., 1991, vol. 16, pp. 463–467.PubMedCrossRefGoogle Scholar
  46. 45.
    Hatfield, D.L, Choi, L.S, Ohama, T, et al., Selenocysteine tRNA[Ser]Sec Isoaccepters as Central Components in Selenoprotein Biosynthesis in Eukaryotes, Selenium in Biology and Human Health, Burk, R.F., Ed., New York: Springer, 1994, pp. 25–44.Google Scholar
  47. 46.
    Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.-A., and Böck, A., Gene for a Novel Transfer-RNA Species That Accepts L-Serine and Cotranslationally Inserts Selenocysteine, Nature, 1988, vol. 331, pp. 723–725.PubMedCrossRefGoogle Scholar
  48. 47.
    Böck, A., Incorporation of Selenium into Bacterial Selenopteins, Selenium in Biology and Human Health, Burk, R.F., Ed., New York: Springer, 1993, pp. 10–24.Google Scholar
  49. 48.
    Lee, B.J., Worland, P.J., Davis, J.N., et al., Identification of a Selenocysteyl-tRNASer in Mammalian Cells That Recognizes the Nonsense Codon, UGA, J. Biol. Chem., 1989, vol. 264, pp. 9724–9727.PubMedGoogle Scholar
  50. 49.
    Diamond, A.M., Dudock, B., and Hatfield, D.L., Structure and Properties of a Bovine Liver UGA Suppressor Serine tRNA with a Tryptophan Anticodon, Cell, 1981, vol. 25, pp. 497–506.PubMedCrossRefGoogle Scholar
  51. 50.
    Haddock, B.A. and Mandrand-Berthelot, M.-A., Escherichia coli Formate-to-Nitrate Respiratory Chain: Genetic Analysis, Biochem. Soc. Trans., 1982, vol. 10, pp. 478–480.PubMedGoogle Scholar
  52. 51.
    Leinfelder, W., Forchhammer, K., Zinoni, F., et al., Escherichia coli Genes Whose Products Are Involved in Selenium Metabolism, J. Bacteriol., 1988, vol. 170, pp. 540–546.PubMedGoogle Scholar
  53. 52.
    Böck, A., Biosynthesis of Selenoproteins—An Overview, Biofactors, 2000, vol. 11, pp. 77–78.PubMedCrossRefGoogle Scholar
  54. 53.
    Böck, A, Selenium Metabolism in Bacteria, Selenium: Its Molecular Biology and Role in Human Health, Hatfield, D.L., Ed., Boston: Kluwer, 2001, pp. 7–22.Google Scholar
  55. 54.
    Hubert, N., Sturchler, C., Westhof, E., et al., The 9/4 Secondary Structure of Eukaryotic Selenocysteine tRNA: More Pieces of Evidence, RNA, 1998, vol. 4, pp. 1029–1033.PubMedCrossRefGoogle Scholar
  56. 55.
    Sturchler, C., Westhof, E., Carbon, P., and Krol, A., Unique Secondary and Tertiary Structural Features of the Eukaryotic Selenocysteine tRNASec, Nucleic Acids Res., 1993, vol. 21, pp. 1073–1079.PubMedCrossRefGoogle Scholar
  57. 56.
    Sturchler-Pierrat, C., Hubert, N., Totsuka, T., et al., Selenocysteylation in Eukaryotes Necessitates the Uniquely Long Aminoacyl Acceptor Stem of Selenocysteine tRNA, J. Biol. Chem., 1995, vol. 270, pp. 18570–18574.PubMedCrossRefGoogle Scholar
  58. 57.
    Ioudovitch, A. and Steinberg, S.V., Modeling the Tertiary Interactions in the Eukaryotic Selenocysteine tRNA, RNA, 1998, vol. 4, pp. 365–373.PubMedGoogle Scholar
  59. 58.
    Mizutani, T. and Goto, Ch., Eukaryotic Selenocysteine tRNA Has the 9/4 Secondary Structure, FEBS Lett., 2006, vol. 466, pp. 359–362.CrossRefGoogle Scholar
  60. 59.
    Hatfield, D.L., Carlson, B.A., Xu, X.-M., et al., Selenocysteine Incorporation Machinery and the Role of Selenoproteins in Development and Health, Progress Nucleic Acid Res. Mol. Biol., 2006, vol. 81, pp. 97–142.CrossRefGoogle Scholar
  61. 60.
    Heider, J., Leinfelder, W., and Böck, A., Occurence and Functional Compatibility within Enterobacteriaceae of a tRNA Species, That Inserts Selenocysteine into Protein, Nucleic Acids Res., 1989, vol. 17, pp. 2529–2540.PubMedCrossRefGoogle Scholar
  62. 61.
    Leinfelder, W., Forchhammer, K., Veprek, B., et al., In vitro Synthesis of Selenocysteinyl-tRNA (UCA) from Seryl-tRNA (UCA): Involvement and Characterization of the selD Gene Product, Proc. Natl. Acad. Sci. U.S.A., 1990, vol. 87, pp. 543–547.PubMedCrossRefGoogle Scholar
  63. 62.
    Amberg, R., Urban, C., Reuner, B., et al., Editing Does not Exist for Mammalian Selenocysteine tRNAs, Nucleic Acids Res., 1993, vol. 21, pp. 5583–5585.PubMedCrossRefGoogle Scholar
  64. 63.
    Diamond, A.M., Choi, I.S., Crain, P.F., et al., Dietary Selenium Affects Methylation of the Wobble Nucleoside in the Anticodon of Selenocysteine tRNA[Ser]Sec, J. Biol. Chem., 1993, vol. 268, pp. 14215–14223.PubMedGoogle Scholar
  65. 64.
    Sprinzl, M., Vorderwübecke, T., and Hartmann, T., Compilation of Sequences of tRNA Genes, Nucleic Acids Res., 1985, vol. 13,suppl., pp. 51–104.Google Scholar
  66. 65.
    Sprinzl, M., Moll, J., Meissner, F., and Hartmann, T., Compilation of tRNA Sequences, Nucleic Acids Res., 1985, vol. 13,suppl., pp. 1–49.Google Scholar
  67. 66.
    Sprinzl, M., Dank, N., Nock, S., and Schön, A., Compilation of tRNA Sequences and Sequences of tRNA Genes, Nucleic Acids Res., 1991, vol. 19, pp. 2127–2171.PubMedGoogle Scholar
  68. 67.
    Baron, C. and Böck, A., The Length of the Amynoacyl-Acceptor Stem of the Selenocysteine-Specific tRNASec of Escherichia coli Is the Determinant for Bending to Elongation Factors SELB or the Tu, J. Biol. Chem., 1991, vol. 266, pp. 20375–20379.PubMedGoogle Scholar
  69. 68.
    Shrimali, R.K., Lobanov, A.V., Xu, X.-M., et al., Selenocysteine tRNA Identification in the Model Organisms Dictyostelium discoideum and Tetrahymena thermophila, Biochem. Biophys. Res. Commun., 2005, vol. 329, pp. 147–151.PubMedCrossRefGoogle Scholar
  70. 69.
    Lobanov, A.V., Delgado, C., Rahlfs, S., et al., The Plasmodium Selenoproteome, Nucleic Acids Res., 2006, vol. 34, pp. 496–505.PubMedCrossRefGoogle Scholar
  71. 70.
    Mourier, T., Pain, A., Barrell, B., and Griffiths-Jones, S., A Selenocysteine tRNA and SECIS Element in Plasmodium falciparum, RNA, 2005, vol. 11, pp. 119–122.PubMedCrossRefGoogle Scholar
  72. 71.
    Schön, A., Böck, A., Ott, G., et al., The Selenocysteine-Inserting Opal Suppressor Serine tRNA from E. coli Is Highly Unusual in Structure and Modification, Nucleic Acids Res., 1989, vol. 17, pp. 7159–7165.PubMedCrossRefGoogle Scholar
  73. 72.
    Xu, X.-M., Zhou, X., Carlson, B.A., et al., The Zebrafish Genome Contains Two Distinct Selenocysteine tRNA[Ser]Sec Genes, FEBS Lett., 1999, vol. 495, pp. 16–20.CrossRefGoogle Scholar
  74. 73.
    Tumbula, D.L., Becker, H.D., Chang, W.-Z., and Söll, D., Domain-Specific Recruitment of Amide Amino Acids for Protein Synthesis, Nature, 2000, vol. 407, pp. 106–110.PubMedCrossRefGoogle Scholar
  75. 74.
    Carlson, B.A, Martin-Romero, F.J, Kumaraswamy, E., et al., Mammalian Selenocysteine tRNA, Selenium: Its Molecular Biology and Role in Human Health, Hatfield, D.L., Ed., Boston: Kluwer, 2001, pp. 23–32.Google Scholar
  76. 75.
    Sunde, R.A. and Evenson, J.K., Serine Incorporation into the Selenocysteine Moiety of Glutathione Peroxidase, J. Biol. Chem., 1987, vol. 262, pp. 933–937.PubMedGoogle Scholar
  77. 76.
    Forchhammer, K. and Böck, A., Selenocysteine Synthase from Escherichia coli: Analysis of the Reaction Sequences, J. Biol. Chem., 1991, vol. 266, pp. 6324–6328.PubMedGoogle Scholar
  78. 77.
    Forchhammer, K., Leinfelder, W., Boesmiller, K., et al., Selenocysteine Synthase from Escherichia coli. Nucleotide Sequence of the Gene (selA) and Purification of the Protein, J. Biol. Chem., 1991, vol. 266, pp. 6318–6323.PubMedGoogle Scholar
  79. 78.
    Lacourciere, G.M, Selenophosphate-Selenium Donor for Protein and tRNA Selenium, Selenium: Its Molecular Biology and Role in Human Health, Hatfield, D.L., Ed., Boston: Kluwer, 2001, pp. 33–44.Google Scholar
  80. 79.
    Böck, A., Thanbichler, M., Rother, M., and Resch, A., Selenocysteine Amynoacyl-tRNA Synthetases, Ibba, M., Franclyn, G.S., and Cusack, S., Eds., Georgetown: Landes Bioscience, 2004, vol. 10, pp. 320–327.Google Scholar
  81. 80.
    Martin, G.W. and Berry, M.J., SECIS Elements, See Ref. 78, 2001, pp. 45–54.Google Scholar
  82. 81.
    Baron, C., Westhof, E., Böck, A., and Giege, R., Solution Structure of Selenocystiene-Inserting tRNA (Sec) from Escherichia coli. Comparison with Canonical tRNA (Ser), J. Mol. Biol., 1993, vol. 231, pp. 274–292.PubMedCrossRefGoogle Scholar
  83. 82.
    Fourmy, D., Guittet, E., and Yashizawa, S., Structure of Prokaryotic SECIS mRNA Hairpin and Its Interaction with Elongation Factor SelB, J. Mol. Biol., 2002, vol. 324, pp. 137–150.PubMedCrossRefGoogle Scholar
  84. 83.
    Forchhammer, K., Leinfelder, W., and Böck, A., Identification of a Novel Translation Factor Necessary for the Incorporation of a Selenocysteine into Protein, Nature, 1989, vol. 342, pp. 453–456.PubMedCrossRefGoogle Scholar
  85. 84.
    Forchhammer, K., Rücknagel, K.P., and Böck, A., Purification and Biochemical Characterization of SELB, a Translation Factor Involved in Selenoprotein Synthesis, J. Biol. Chem., 1990, vol. 265, pp. 9346–9350.PubMedGoogle Scholar
  86. 85.
    Forster, Ch., Ott, G., Forchhammer, K., and Sprinzl, M., Interaction of a Selenocysteine-Incorporating tRNA with Elongation Factor Tu from E. coli, Nucleic Acids Res., 1990, vol. 18, pp. 487–491.PubMedCrossRefGoogle Scholar
  87. 86.
    Kromayer, M., Wilting, R., Tormay, P., and Böck, A., Domain Structure of the Prokaryotic Selenocysteine-Specific Elongation Factor SelB, J. Mol. Biol., 1996, vol. 262, pp. 413–420.PubMedCrossRefGoogle Scholar
  88. 87.
    Baron, C., Heider, J., and Böck, A., Interaction of Translation Factor SELB with the Formate Dehydrogenase H Selenopolypeptide mRNA, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, pp. 181–185.Google Scholar
  89. 88.
    Heider, J., Baron, C., and Böck, A., Coding from a Distance: Dissection of the mRNA Determinants Required for the Incorporation Selenocysteine into Protein, EMBO J., 1992, vol. 11, pp. 3759–3766.PubMedGoogle Scholar
  90. 89.
    Klug, S.J., Hüttenhofer, A., Kromayer, M., and Famulok, M., In vitro and in vivo Characterization of a Novel mRNA Motifs That Bind Special Elongation Factor SelB, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 6676–6681.PubMedCrossRefGoogle Scholar
  91. 90.
    Hüttenhofer, A. and Böck, A., Selenocysteine Inserting RNA Elements Modulate GTP Hydrolysis of Elongation Factor SelB, Biochemistry (Moscow), 1998, vol. 37, pp. 885–890.CrossRefGoogle Scholar
  92. 91.
    Hüttenhofer, A., Westhof, E., and Böck, A., Solution Structure of mRNA Hairpins Promoting Selenocysteine Incorporation in Escherichia coli and Their Base-Specific Interaction with Special Elongation Factor SELB, RNA, 1996, vol. 2, pp. 354–366.PubMedGoogle Scholar
  93. 92.
    Mansell, J.B., Guevremont, D., Poole, E.S., and Tate, W.P., A Dynamic Competition between Release Factor 2 and the tRNA (Sec) Decoding UGA at the Recoding Site of Escherichia coli Formate Dehydrogenase H, EMBO J., 2001, vol. 20, pp. 7284–7293.PubMedCrossRefGoogle Scholar
  94. 93.
    Tormay, P., Sawers, A., and Böck, A., Role of Stoichiometry between mRNA, Translation Factor SelB and Selenocysteyl-tRNA in Selenoprotein Synthesis, Mol. Microbiol., 1996, vol. 21, pp. 1253–1259.PubMedCrossRefGoogle Scholar
  95. 94.
    Thanbichler, M., Böck, A., and Goody, R.S., Kinetics of Interaction of Translation Factor SelB from Escherichia coli with Guanosine Nucleotides and SECIS RNA, J. Biol. Chem., 2000, vol. 275, pp. 20458–20466.PubMedCrossRefGoogle Scholar
  96. 95.
    Ibba, M. and Söll, D., Aminoacyl-tRNAs: Setting the Limits of the Genetic Code, Genes Dev., 2004, vol. 18, pp. 731–738.PubMedCrossRefGoogle Scholar
  97. 96.
    Thanbichler, M. and Böck, A., The Function of SECIS RNA in Translational Control of Gene Expression in Escherichia coli, EMBO J., 2002, vol. 21, pp. 6925–6934.PubMedCrossRefGoogle Scholar
  98. 97.
    Driscoll, D.M. and Copeland, P.R., Mechanism and Regulation of Selenoprotein Synthesis, Annu. Rev. Nutr., 2003, vol. 23, pp. 17–40.PubMedCrossRefGoogle Scholar
  99. 98.
    Böck, A., Invading the Genetic Code, Science, 2001, vol. 292, pp. 453–454.PubMedCrossRefGoogle Scholar
  100. 99.
    Copeland, P.R., Fletcher, J.E., Carlson, B.A., et al., A Novel RNA Binding Protein, SBP2, Is Required for the Translation of Mammalian Selenoprotein mRNAs, EMBO J., 2000, vol. 19, pp. 306–314.PubMedCrossRefGoogle Scholar
  101. 100.
    Tujebajeva, R.M., Copeland, P.R., Xu, X.-M., et al., Decoding Apparatus for Eukaryotic Selenocysteine Insertion, EMBO Rep., 2000, vol. 1, pp. 1–6.CrossRefGoogle Scholar
  102. 101.
    Fagegaltier, D., Hubert, N., Yamada, K., et al., Characterization of mSelB, a Novel Mammalian Elongation Factor for Selenoprotein Translation, EMBO J., 2000, vol. 19, pp. 4796–4805.PubMedCrossRefGoogle Scholar
  103. 102.
    Berry, M.J., Banu, L., Chen, Y.Y., et al., Recognition of UGA as a Selenocysteine Codon in Type I Deiodinase Requires Sequences in the 3’ Untranslated Region, Nature, 1991, vol. 353, pp. 273–276.PubMedCrossRefGoogle Scholar
  104. 103.
    Low, S.C. and Berry, M.J., Knowing When not to Stop: Selenocysteine Incorporation in Eukaryotes, Trends Biochem. Sci., 1996, vol. 21, pp. 203–208.PubMedGoogle Scholar
  105. 104.
    Buettner, C., Harney, J.W., and Larsen, P.R., The 3′-Untranslated Region of Human Type 2 Iodothyronine Deiodinase mRNA Contains a Functional Selenocysteine Insertion Sequence Element, J. Biol. Chem., 1998, vol. 273, pp. 33374–33378.PubMedCrossRefGoogle Scholar
  106. 105.
    Walczak, R., Westhof, E., Carbon, P., and Krol, A., A Novel RNA Structural Motif in the Selenocysteine Insertion Element of Eukaryotic Selenoprotein mRNAs, RNA, 1996, vol. 2, pp. 367–379.PubMedGoogle Scholar
  107. 106.
    Walkzak, R., Carbon, P., and Krol, A., An Essential Non-Watson-Crick Base Pair Motif in 3’UTR to Mediate Selenoprotein Translation, RNA, 1998, vol. 4, pp. 74–84.Google Scholar
  108. 107.
    Martin, G.W., Harney, J.W., and Berry, M.J., Functionality of Mutations at Conserved Nucleotides in Eukaryotic SECIS Elements Is Determined by the Identity of a Single Non-Conserved Nucleotide, RNA, 1998, vol. 4 P, pp. 65–73.Google Scholar
  109. 107a.
    Grundner-Culemann, E., Martin, G.W., III, Harney, J.W., and Berry, M.J., Two Distinct SECIS Structures Capable of Directing Selenocysteine Incorporation in Eukaryotes, RNA, 1999, vol. 5, pp. 625–635.PubMedCrossRefGoogle Scholar
  110. 108.
    Korotkov, K.V., Novoselov, S.V., Hatfield, D.L., and Gladyshev, V.N., Mammalian Selenoprotein in Which Selenocysteine (Sec) Incorporation Is Supported by a New Form of Sec Insertion Sequence Element, Mol. Cell Biol., 2002, vol. 22, pp. 1402–1411.PubMedCrossRefGoogle Scholar
  111. 109.
    Fagegaltier, D., Lescure, A., Walczak, R., et al., Structural Analysis of New Local Features in SECIS RNA Hairpins, Nucleic Acids Res., 2000, vol. 28, pp. 2679–2689.PubMedCrossRefGoogle Scholar
  112. 110.
    Wilting, R., Schorling, S., Persson, B.C., and Böck, A., Selenoprotein Synthesis in Archaea: Identification of an mRNA Element of Methanococcus jannaschii Probably Directing Selenocysteine Insertion, J. Mol. Biol., 1997, vol. 266, pp. 637–641.PubMedCrossRefGoogle Scholar
  113. 110a.
    Rother, M., Wilting, R., Commans, S., and Böck, A., Identification and Characterization of the Selenocysteine-Specific Translation Factor SelB from the Archaeon Methanococcus jannaschii, J. Mol. Biol., 2000, vol. 299, pp. 351–358.PubMedCrossRefGoogle Scholar
  114. 111.
    Rother, M., Resch, A., Wilting, R., and Böck, A., Selenoprotein Synthesis in Archaea, Biofactors, 2001, vol. 14, pp. 75–83.PubMedCrossRefGoogle Scholar
  115. 112.
    Rother, M., Resch, A., Gardner, W.L., et al., Heterologous Expression of Archaeal Selenoprotein Genes Directed by the SECIS Element Located in the 3’ Non-Translated Region, Mol. Microbiol., 2001, vol. 40, pp. 900–908.PubMedCrossRefGoogle Scholar
  116. 113.
    Rother, M., Mathes, I., Lottspeich, F., and Böck, A., Inactivation of the selB Gene in Methanococcus maripaludis: Effect on Synthesis of Selenoproteins and Their Sulfur-Containig Homologs, J. Bacteriol., 2003, vol. 185, pp. 107–114.PubMedCrossRefGoogle Scholar
  117. 114.
    Rao, M., Carlson, B.A., Novoselov, S.V., et al., Chlamydomonas reinhardtii Selenocysteine tRNA[Ser)]Sec, RNA, 2003, vol. 9, pp. 923–930.PubMedCrossRefGoogle Scholar
  118. 115.
    Novoselov, S.V., Rao, M., Onoshko, N.V., et al., Selenoproteins and Selenocysteine Insertion System in the Model Plant Cell System, Chlamydomonas reinhardtii, EMBO J., 2002, vol. 21, pp. 3681–3693.CrossRefGoogle Scholar
  119. 116.
    Shen, Q., McQuilkin, P.A., and Newburger, P.E., RNA-Binding Proteins That Specifically Recognize the Selenocysteine Insertion Sequence of Human Cellular Glutathione Peroxidase mRNA, J. Biol. Chem., 1995, vol. 270, pp. 30448–30452.PubMedCrossRefGoogle Scholar
  120. 117.
    Shen, Q., Wu, R., Leonard, J.L., and Newburger, P.E., Identification and Molecular Cloning of Human Selenocysteine Insertion Sequence-Binding Protein: A Bifunctional Role for DNA-Binding Protein B, J. Biol. Chem., 1998, vol. 273, pp. 5443–5446.PubMedCrossRefGoogle Scholar
  121. 118.
    Hubert, N., Walczak, R., Carbon, P., and Krol, A., A Protein Binds the Selenocysteine Insertion Element in the 3′-UTR of Mammalian Selenoprotein mRNAs, Nucleic Acids Res., 1996, vol. 24, pp. 464–469.PubMedCrossRefGoogle Scholar
  122. 119.
    Lesoon, A., Mehta, A., Singh, R., et al., An RNA-Binding Protein Recognizes a Mammalian Selenocysteine Insertion Sequence Element Required for Cotranslational Incorporation of Selenocysteine, Mol. Cell Biol., 1997, vol. 17, pp. 1977–1985.PubMedGoogle Scholar
  123. 120.
    Fujiwara, T., Busch, K., Gross, H.J., and Mizutani, T., A SECIS-Binding Protein (SBP) Is Distinct from Selenocysteyl-tRNA Protecting Factor (SePF), Biochimie, 1999, vol. 81, pp. 213–218.PubMedCrossRefGoogle Scholar
  124. 121.
    Copeland, P.R. and Driscoll, D.M., Purification, Redox Sensitivity, and RNA Binding Properties of SECIS-Binding Protein 2, a Protein Involved in Selenoprotein Biosynthesis, J. Biol. Chem., 1999, vol. 274, pp. 25447–25454.PubMedCrossRefGoogle Scholar
  125. 122.
    Copeland, P.R., Stepanik, V.A., and Driscoll, D.M., Insight into Mammalian Selenocysteine Insertion: Domain Structure and Ribosome Binding Properties of Sec Insertion Sequence Binding Protein 2, Mol. Cell. Biol., 2001, vol. 21, pp. 1491–1498.PubMedCrossRefGoogle Scholar
  126. 123.
    Fletcher, J.E., Copeland, P.R., Driscoll, D.M., and Krol, A., The Selenocysteine Incorporation Machinery: Interaction between the SECIS RNA and the SECIS-Binding Protein SBP2, RNA, 2001, vol. 7, pp. 1442–1453.PubMedGoogle Scholar
  127. 124.
    Fletcher, J.E., Copeland, P.R., and Driscoll, D.M., Polysome Distribution of Phospholipid Hydroperoxide Glutathione Peroxidase mRNA: Evidence for a Block in Elongation at the UGA/Selenocysteine Codon, RNA, 2000, vol. 6, pp. 1573–1584.PubMedCrossRefGoogle Scholar
  128. 125.
    Small-Howard, A.L. and Berry, M.J., Unique Features of Selenocysteine Incorporation Function within the Context of General Eukaryotic Translational Processes, Biochem. Soc. Trans., 2005, vol. 33, pp. 1493–1497.PubMedCrossRefGoogle Scholar
  129. 126.
    Caban, K. and Copeland, P.R., Size Matters: A View of Selenocysteine Incorporation from the Ribosome, Cell. Mol. Life Sci., 2006, vol. 63, pp. 73–81.PubMedCrossRefGoogle Scholar
  130. 127.
    Hoffmann, P.R. and Berry, M.J., Selenoprotein Synthesis: A Unique Translational Mechanism Used by a Diverse Family of Proteins, Thyroid, 2005, vol. 15, pp. 769–775.PubMedCrossRefGoogle Scholar
  131. 128.
    Kinzy, S.A., Caban, K., and Copeland, P.R., Characterization of the SECIS Binding Protein 2 Complex Required for the Co-Translational Insertion of Selenocysteine in Mammals, Nucleic Acids Res., 2005, vol. 33, pp. 5172–5180.PubMedCrossRefGoogle Scholar
  132. 128.
    Klein, D.J., Schmeing, T.M., Moore, P.B., and Steitz, T.A., The Kink-Turn: A New RNA Secondary Structure Motif, EMBO J., 2001, vol. 20, pp. 4214–4221.PubMedCrossRefGoogle Scholar
  133. 129.
    Chavatte, L., Brown, B.A., and Driscoll, D.M., Ribosomal Protein L30 Is a Component of the UGA-Selenocysteine Recoding Machinery in Eukaryotes, Nat. Struct. Mol. Biol., 2005, vol. 12, pp. 408–416.PubMedCrossRefGoogle Scholar
  134. 130.
    Berry, M.J., Knowing When to Stop, Nat. Struct. Mol. Biol., 2005, vol. 12, pp. 389–390.PubMedCrossRefGoogle Scholar
  135. 131.
    Fagegaltier, D., Hubert, N., Carbon, P., and Krol, A., The Selenocysteine Insertion Sequence Binding Protein SBP Is Different from the Y-Box Protein dbpB, Biochimie, 2000, vol. 82, pp. 117–122.PubMedCrossRefGoogle Scholar
  136. 132.
    Berry, M.J., Tujebajeva, R.M., Copeland, P.R., et al., Selenocysteine Incorporation Directed from the 3’UTR: Characterization of Eukaryotic of EFsec and Mechanistic Implications, Biofactors, 2001, vol. 14, pp. 17–24.PubMedCrossRefGoogle Scholar
  137. 133.
    Carlson, B.A., Xu, X.-M., Kryukov, G.V., et al., Identification and Characterization of PhosphoseryltRNA[Ser]Sec Kinase, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 12848–12853.PubMedCrossRefGoogle Scholar
  138. 134.
    Zavacki, A.M., Mansell, J.B., Chung, M., et al., Coupled tRNASec-Dependent Assembly of the Selenocysteine Decoding Apparatus, Mol. Cell, 2003, vol. 11, pp. 773–781.PubMedCrossRefGoogle Scholar
  139. 135.
    Ma, S., Hill, K.E., Caprioli, R.M., and Burk, R.F., Mass Spectrometric Characterization of Full-Length Rat Selenoprotein P and Three Isoforms Shortened at the C Terminus. Evidence That Three UGA Codons in the mRNA Open Reading Frame Have Alternative Functions of Specifying Selenocysteine Insertion or Translation Termination, J. Biol. Chem., 2002, vol. 277, pp. 12749–12754.PubMedCrossRefGoogle Scholar
  140. 136.
    McCaughan, K.K., Brown, C.M., Dalphin, M.E., et al., Translational Termination Efficiency in Mammals Is Influenced by the Base Following the Stop Codon, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 5431–5435.PubMedCrossRefGoogle Scholar
  141. 137.
    Grundner-Culemann, E., Martin, G.W., Tujebajeva, R., et al., Interplay between Termination and Translation Machinery in Eukaryotic Selenoprotein Synthesis, J. Mol. Biol., 2001, vol. 310, pp. 699–707.PubMedCrossRefGoogle Scholar
  142. 138.
    Nasim, M.T., Jaenecke, S., Belduz, A., et al., Eukaryotic Selenocysteine Incorporation Follows a Nonprocessive Mechanism That Competes with Translational Termination, J. Biol. Chem., 2000, vol. 275, pp. 14846–14852.PubMedCrossRefGoogle Scholar
  143. 139.
    Birringer, M., Pilawa, S., and Flohe, L., Trends in Selenium Biochemistry, Nat. Prod. Rep., 2002, vol. 19, pp. 693–718.PubMedCrossRefGoogle Scholar
  144. 140.
    Nirenberg, M., Caskey, C.T., Marshall, R.E., et al., The RNA Code in Protein Synthesis, Cold Spring Harbor Symp. Quant. Biol., 1966, vol. 31, pp. 11–24.PubMedGoogle Scholar
  145. 141.
    Khorana, G.H., Büchi, H., Ghosh, H., et al., Polynucleotide Synthesis and the Genetic Code, Cold Spring Harbor Symp. Quant. Biol., 1966, vol. 31, pp. 39–49.PubMedGoogle Scholar
  146. 142.
    Marshall, R.E., Caskey, C.T., and Nirenberg, M., Fine Structure of RNA Code Words, Recognized by Bacterial, Amphibian and Mammalian Transfer RNA, Science, 1967, vol. 150, pp. 820–826.CrossRefGoogle Scholar
  147. 143.
    James, C.M., Ferguson, T.K., Leykam, J.F., and Krzycki, J.A., The Amber Codon in the Gene Encoding the Monomethylamine Methyltransferase Isolated from Methanosarcina barkeri Is Translated as a Sense Codon, J. Biol. Chem., 2001, vol. 276, pp. 34252–34258.PubMedCrossRefGoogle Scholar
  148. 144.
    Hao, B., Gong, W., Ferguson, T.K., et al., A New UAG Encoded Residue in the Structure of a Methanogen Methyltransferase, Science, 2002, vol. 296, pp. 1462–1466.PubMedCrossRefGoogle Scholar
  149. 145.
    Burke, S.A., Lo, S.L., and Krzycki, J.A., Clustered Genes Encoding from Methyltransferases of Methanogenesis from Monomethylamine, J. Bacteriol., 1998, vol. 180, pp. 3432–3440.PubMedGoogle Scholar
  150. 146.
    Paul, L., Ferguson, D.J., and Krzycki, J.A., The Trimethylamine Methyltransferase Gene and Multiple Dimethylamine Methyltransferase Genes of Methanosarcina barkeri Contain In-Frame and Readthrough Amber Codons, J. Bacteriol., 2000, vol. 182, pp. 2520–2529.PubMedCrossRefGoogle Scholar
  151. 147.
    Ibba, M. and Söll, D., Genetic Code: Introducing Pyrrolysine, Curr. Biol., 2002, vol. 12, pp. R464–R466.PubMedCrossRefGoogle Scholar
  152. 148.
    Polycarpo, C., Ambrogelly, A., Ruan, B., et al., Activation of the Pyrrolysine Suppressor tRNA Requires Formation of a Ternary Complex with Class I and Class II Lysyl-tRNA Synthetases, Mol. Cell, 2003, vol. 12, pp. 287–294.PubMedCrossRefGoogle Scholar
  153. 149.
    Theobald-Dietrich, A., Frugier, M., Giege, R., and Rudinger-Thirion, J., Atypical Archaeal tRNA Pyrrolysine Transcript Behaves towards EF-Tu as a Typical Elongator tRNA, Nucleic Acids Res., 2004, vol. 32, pp. 1091–1096.PubMedCrossRefGoogle Scholar
  154. 150.
    Ibba, M., Stathopoulos, C., and Söll, D., Protein Synthesis: Twenty Three Amino Acids and Counting, Curr. Biol., 2001, vol. 11, pp. R563–R565.PubMedCrossRefGoogle Scholar
  155. 151.
    Polycarpo, C., Ambrogelly, A., Berube, A., et al., An Aminoacyl-tRNA Synthetase That Specifically Activates Pyrrolysine, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 12450–12454.PubMedCrossRefGoogle Scholar
  156. 152.
    Atkins, J.F. and Gesteland, R.F., The 22nd Amino Acid, Science, 2002, vol. 296, pp. 1409–1410.PubMedCrossRefGoogle Scholar
  157. 153.
    Namy, O., Rousset, J.P., Napthine, S., and Brierley, I., Reprogrammed Genetic Decoding in Cellular Gene Expression, Mol. Cell, 2004, vol. 13, pp. 157–168.PubMedCrossRefGoogle Scholar
  158. 154.
    Galagan, J.E., Nusbaum, C., Roy, A., et al., The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity, Genome Res., 2002, vol. 12, pp. 532–542.PubMedCrossRefGoogle Scholar
  159. 155.
    Wang, L. and Schultz, P.G., Expanding the Genetic Code, Angew. Chem. Int. Ed. Engl., 2004, vol. 44, pp. 34–66.PubMedCrossRefGoogle Scholar
  160. 156.
    Cropp, T.A. and Schultz, P.G., An Expanding Genetic Code, Trends Genet., 2004, vol. 20, pp. 625–630.PubMedCrossRefGoogle Scholar
  161. 157.
    Xie, J. and Schultz, P.G., A Chemical Toolkit for Proteins—an Expanded Genetic Code, Mol. Cell. Biol., 2006, vol. 7, pp. 775–782.Google Scholar
  162. 158.
    Wang, L., Bröck, A., Herberich, B., and Schultz, P.G., Expanding the Genetic Code of Escherichia coli, Science, 2001, vol. 292, pp. 498–500.PubMedCrossRefGoogle Scholar
  163. 159.
    Wang, L., Bröck, A., and Schultz, P.G., Adding L-3-(2-Naphthyl)alanine to the Genetic Code of E. coli, J. Am. Chem. Soc., 2002, vol. 124, pp. 1836–1837.PubMedCrossRefGoogle Scholar
  164. 160.
    Wang, L., Zhang, Z., Bröck, A., and Schultz, P.G., Addition of the Keto Functional Group to the Genetic Code of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 56–61.PubMedCrossRefGoogle Scholar
  165. 161.
    Döring, V., Mootz, H.D., Nangle, L.A., et al., Enlarging the Amino Acid Set of Escherichia coli by Infiltration of the Valine Coding Pathway, Science, 2001, vol. 292, pp. 501–504.PubMedCrossRefGoogle Scholar
  166. 162.
    Lobanov, A.V., Kryukov, G.V., Hatfield, D.L., and Gladyshev, V.N., Is There a Twenty Third Amino Acid in the Genetic Code?, Trends Genet., 2006, vol. 22, pp. 357–360.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations