Russian Journal of Genetics

, Volume 46, Issue 7, pp 769–785 | Cite as

Intergenomic chromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes

  • E. D. Badaeva
  • E. B. Budashkina
  • E. N. Bilinskaya
  • V. A. Pukhalskiy
Reviews and Theoretical Articles

Abstract

The results of analysis of the genome formation in interspecific hybrids of Triticum aestivum with T. timopheevii are reviewed. The spectra of substitutions and rearrangements are shown to depend on the genotypes of the parental forms and on the direction of selection. The frequencies of substitutions of individual T. timopheevii chromosomes significantly vary and reflect the level of their divergence relative to the common wheat chromosomes. Some aspects of classification of the At- and G-genome chromosomes are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorofeev, V.F., Filatenko, A.A., Migushova, E.F., et al., Pshenitsa (The Wheat), Leningrad: Kolos, 1979.Google Scholar
  2. 2.
    Dvorák, J., Genome Analysis of the Polyploid Species in the Triticum-Aegilops Alliance, Proc. 9th Int. Wheat Genet. Symp., Slinkard, A.E., Ed., Saskatoon: Printcrafters, 1998, vol. 5, pp. 8–11.Google Scholar
  3. 3.
    Liu, C.J., Atkinson, M.D., Chinoy, C.N., et al., Nonhomoeologous Translocations between Group 4, 5 and 7 Chromosomes within Wheat and Rye, Theor. Appl. Genet., 1992, vol. 83, no. 3, pp. 305–312.CrossRefGoogle Scholar
  4. 4.
    Jiang, J. and Gill, B.S., Different Species-Specific Chromosome Translocations in Triticum timopheevii and T. turgidum Support the Diphyletic Origin of Polyploid Wheats, Chrom. Res., 1994, vol. 2, no. 1, pp. 59–64.CrossRefPubMedGoogle Scholar
  5. 5.
    Salina, E.A., Leonova, I.N., Efremova, T.T., et al., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, no. 1, pp. 71–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Naranjo, T., Roca, A., Goicoecha, P.G., et al., Arm Homoeology of Wheat and Rye Chromosomes, Genome, 1987, vol. 29, no. 6, pp. 873–882.Google Scholar
  7. 7.
    Rodriguez, S., Perera, E., Maestra, B., et al., Chromosome Structure of Triticum timopheevii Relative to T. turgidum, Genome, 2000, vol. 43, no. 6, pp. 923–930.CrossRefPubMedGoogle Scholar
  8. 8.
    Dobrovol’skaya, O.B., Surdii, P., Bernard, M., and Salina, E.A., Chromosome Synteny of the A Genome of Two Evolutionary Wheat Lines, Russ. J. Genet., 2009, vol. 45, no. 11, pp. 1368–1375.CrossRefGoogle Scholar
  9. 9.
    Feldman, M., Lupton, F.G.H., and Miller, T.E., Wheats, in Evolution of Crop Plants, London: Longman, 1995, pp. 184–192.Google Scholar
  10. 10.
    Huang, S., Sirikhachornkit, A., Su, X., et al., Genes Encoding Plastid Acetyl-CoA Carboxylase and 3-Phosphoglycerate Kinase of the Triticum/Aegilops Complex and the Evolutionary History of Polyploid Wheat, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 12, pp. 8133–8138.CrossRefPubMedGoogle Scholar
  11. 11.
    Hutchinson, J., Miller, T.E., Jahier, J., et al., Comparison of the Chromosomes of Triticum timopheevi with Related Wheats Using the Techniques of C-Banding and in situ Hybridization, Theor. Appl. Genet., 1982, vol. 64, no. 1, pp. 31–40.CrossRefGoogle Scholar
  12. 12.
    Zurabishvili, T.G., Iordansky, A.B., and Badaev, N.S., Linear Differentiation of Cereal Chromosomes: II. Polyploid Wheats, Theor. Appl. Genet., 1978, vol. 51, no. 5, pp. 201–210.CrossRefGoogle Scholar
  13. 13.
    Badaeva, E.D., Shkutina, F.M., Bogdevich, I.N., et al., Comparative Study of Triticum aestivum and T. timopheevi Genomes Using C-Banding Technique, Plant Syst. Evol., 1986, vol. 154, nos. 3–4, pp. 183–194.CrossRefGoogle Scholar
  14. 14.
    Dvorák, J., The Origin of Wheat Chromosomes 4A and 4B and Their Genome Reallocation, Can. J. Genet. Cytol., 1983, vol. 25, no. 3, pp. 210–214.Google Scholar
  15. 15.
    Shang, X.M., Jackson, R.C., and Nguyen, H.T., Heterochromatin Diversity and Chromosome Morphology in Wheats Analyzed by HKG Banding Technique, Genome, 1988, vol. 30, no. 6, pp. 956–965.Google Scholar
  16. 16.
    Chen, P.D. and Gill, B.S., The Origin of Chromosome 4A, and Genomes B and G of Tetraploid Wheats, Proc. 6th Int. Wheat Genet. Symp., Sakamoto, S., Ed., Kyoto: Plant Germ-Plasm Inst. Kyoto Univ., 1984, pp. 39–48.Google Scholar
  17. 17.
    Gill, B.S. and Chen, P.D., Role of Cytoplasm-Specific Introgression in the Evolution of the Polyploid Wheats, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, no. 19, pp. 6800–6804.CrossRefPubMedGoogle Scholar
  18. 18.
    Maestra, B. and Naranjo, T., Structural Chromosome Differentiation between Triticum timopheevii and T. turgidum and T. aestivum, Theor. Appl. Genet., 1999, vol. 98, no. 5, pp. 744–750.CrossRefGoogle Scholar
  19. 19.
    Badaeva, E.D., Budashkina, E.B., Badaev, N.S., et al., General Features of Chromosome Substitutions in Triticum aestivum × T. timopheevii Hybrids, Theor. Appl. Genet., 1991, vol. 82, no. 2, pp. 227–232.CrossRefGoogle Scholar
  20. 20.
    Gill, K.S, Gill, B.S, and Snyder, E.B, Triticum araraticum Chromosome Substitutions in Common Wheat, Triticum aestivum cv. Wichita, Proc. 7th Int. Wheat Genet. Symp., Miller, T.E., Koebner, R.M.D., and Avon, V., Eds., Cambridge: Bath Press, 1988, pp. 87–92.Google Scholar
  21. 21.
    Morris, R. and Sears, E.R., The Cytogenetics of Wheat and Its Relatives, in Wheat and Wheat Improvement, Madison, 1967, pp. 19–87.Google Scholar
  22. 22.
    Sears, E.R. and Okamato, M., Intergenomic Chromosome Relationship in Hexaploid Wheat, Proceedings of 10th International Congress of Genetics, Montreal: Univ. Toronto Press, 1958, pp. 258–259.Google Scholar
  23. 23.
    Badaeva, E.D. and Gill, B.S., Spontaneous Chromosome Substitutions in Hybrids of Triticum aestivum with T. araraticum Detected by C-Banding Technique, Wheat Inform. Serv., 1995, vol. 80, no. 1, pp. 26–31.Google Scholar
  24. 24.
    Rodrguez, S., Maestra, B., Perera, E., et al., Pairing Affinities of the B- and G-Genome Chromosomes of Polyploid Wheats with Those of Aegilops speltoides, Genome, 2000, vol. 43, no. 5, pp. 814–819.CrossRefGoogle Scholar
  25. 25.
    Badaeva, E.D., Prokof’eva, Z.D., Bilinskaya, E.N., et al., Cytogenetic Analysis of Hybrids Resistant to Yellow Rust and Powdery Mildew Obtained by Crossing Common Wheat (Triticum aestivum L., AABBDD) with Wheats of the Timopheevi Group (AtAtGG), Russ. J. Genet., 2000, vol. 36, no. 12, pp. 1401–1410.CrossRefGoogle Scholar
  26. 26.
    Badaeva, E.D., Badaev, N.S., Enno, T.M., et al., Chromosome Substitution in Progeny of Hybrids Triticum aestivum × Triticum timopheevii, Resistant to Brown Rust and Powdery Mildew, Russ. J. Genet., 1995, vol. 31, no. 1, pp. 89–92.Google Scholar
  27. 27.
    Shkutina, F.M., Kalinina, N.P., and Usova, T.K., The Role of a Soft Wheat Variety in Introgression of Alien Genetic Material in Its Genome and the Stabilization Rate of a Hybrid Form, Genetika (Moscow), 1988, vol. 24, no. 1, pp. 98–109.Google Scholar
  28. 28.
    Badaev, N.S, Badaeva, E.D, Dubovets, N.I, et al., Genotype-Environment Interaction and the Process of Karyotype Formation: I. Tetraploid Triticale, Proc. 2nd Int. Symp. Chromosome Engineering Plants, Kimber, G., Ed., 1990, pp. 270–273.Google Scholar
  29. 29.
    Brown-Guedira, G., Badaeva, E.D., Gill, B.S., et al., Chromosome Substitutions of Triticum timopheevii in Common Wheat and Some Observations on the Evolution of Polyploid Wheat Species, Theor. Appl. Genet., 1996, vol. 93, no. 8, pp. 1291–1298.CrossRefGoogle Scholar
  30. 30.
    Allard, R.W. and Shands, R.G., Inheritance of Resistance to Stem Rust and Powdery Mildew in Cytologically Stable Spring Wheats Derived from Triticum timopheevii, Phytopathology, 1954, vol. 44, no. 2, pp. 266–274.Google Scholar
  31. 31.
    Dyck, P.L., Transfer of a Gene for Stem Rust Resistance from Triticum araraticum to Hexaploid Wheat, Genome, 1992, vol. 35, no. 5, pp. 788–792.Google Scholar
  32. 32.
    Friebe, B., Jiang, J., Raupp, W.J., et al., Characterization of Wheat-Alien Translocations Conferring Resistance to Diseases and Pests: Current Status, Euphytica, 1996, vol. 91, no. 1, pp. 59–87.CrossRefGoogle Scholar
  33. 33.
    McIntosh, R.A. and Gyarfas, J., Triticum timopheevii as a Source of Resistance to Wheat Stem Rust, Zeitschrift Pflanzenzucht., 1971, vol. 66, no. 3, pp. 240–248.Google Scholar
  34. 34.
    McIntosh, R.A, Hart, G.E, Devos, K.M, et al., Catalogue of Gene Symbols for Wheat, Proc. 9th Int. Wheat Genet. Symp., Slinkard, A.E., Ed., Saskatoon: Printcrafters, 1998, vol. 5, pp. 1–235.Google Scholar
  35. 35.
    Nyquist, N.E., Differential Fertilization in the Inheritance of Stem Rust Resistance in Hybrids Involving a Common Wheat Strain Derived from Triticum timopheevii, Genetics, 1962, vol. 47, no. 8, pp. 1109–1124.PubMedGoogle Scholar
  36. 36.
    Leonova, I.N., Roder, M.S., Kalinina, N.P., Budashkina E.B., Genetic Analysis and Localization of Loci, Controlling Leaf Rust Resistance of Triticum aestivum × Triticum timorheevii Introgression Lines, Russ. J. Genet., 2008, vol. 44, no. 12, pp. 1431–1437.CrossRefGoogle Scholar
  37. 37.
    Järve, K., Peusha, H.O., Tsymbalova, J., et al., Chromosomal Location of a Triticum timopheevii-Derived Powdery Mildew Resistance Gene Transferred to Common Wheat, Genome, 2000, vol. 43, no. 2, pp. 377–381.CrossRefPubMedGoogle Scholar
  38. 38.
    Brown-Guedira, G.L., Singh, S., and Fritz, A.K., Performance and Mapping of Leaf Rust Resistance Transferred to Wheat from Triticum timopheevii subsp. armeniacum, Phytopathology, 2003, vol. 93, no. 7, pp. 784–789.CrossRefPubMedGoogle Scholar
  39. 39.
    Maxwell, J., Lyerly, J., Cowger, C., et al., MlAG12: A Triticum timopheevii-Derived Powdery Mildew Resistance Gene in Common Wheat on Chromosome 7AL, Theor. Appl. Genet., 2009, vol. 119, no. 8, pp. 1489–1495.CrossRefPubMedGoogle Scholar
  40. 40.
    Perugini, L., Murphy, J., Marshall, D., et al., Pm37, a New Broadly Effective Powdery Mildew Resistance Gene from Triticum timopheevii, Theor. Appl. Genet., 2008, vol. 116, no. 3, pp. 417–425.CrossRefPubMedGoogle Scholar
  41. 41.
    Brown-Guedira, G.L., Gill, B.S., Cox, T.S., et al., Transfer of Disease Resistance Genes from Triticum araraticum to Common Wheat, Plant Breed., 1997, vol. 116, no. 2, pp. 105–112.CrossRefGoogle Scholar
  42. 42.
    Yamamori, M., An N-Band Marker for Gene Lr18 for Resistance to Leaf Rust in Wheat, Theor. Appl. Genet., 1994, vol. 89, no. 5, pp. 643–646.CrossRefGoogle Scholar
  43. 43.
    Tsujimoto, H., Gametocidal Genes in Wheat and Its Relatives: IV. Functional Relationships between Six Gametocidal Genes, Genome, 1995, vol. 38, no. 2, pp. 283–289.CrossRefPubMedGoogle Scholar
  44. 44.
    Hohmann, U., Badaeva, K., Busch, W., et al., Molecular Cytogenetic Analysis of Agropyron Chromatin Specifying Resistance to Barley Yellow Dwarf Virus in Wheat, Genome, 1996, vol. 39, no. 2, pp. 336–347.CrossRefPubMedGoogle Scholar
  45. 45.
    Zohary, D. and Feldman, M., Hybridization between Amphiploids and the Evolution of Polyploids in the Wheat (Aegilops-Triticum) Group, Evolution, 1962, vol. 16, no. 1, pp. 44–61.CrossRefGoogle Scholar
  46. 46.
    Devos, K.M., Dubkovsky, J., Dvorak, J., et al., Structural Evolution of Wheat Chromosomes 4A, 5A, and 7B and Its Impact on Recombination, Theor. Appl. Genet., 1995, vol. 91, no. 2, pp. 282–288.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. D. Badaeva
    • 1
  • E. B. Budashkina
    • 2
  • E. N. Bilinskaya
    • 3
  • V. A. Pukhalskiy
    • 3
  1. 1.Ehgelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia
  3. 3.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations