Russian Journal of Genetics

, Volume 46, Issue 5, pp 546–554 | Cite as

Genetic variation of some varieties of common juniper Juniperus communis L. inferred from analysis of allozyme loci

  • E. V. Khantemirova
  • V. L. Semerikov
Plant Genetics


Using the method of allozyme analysis, genetic variation, diversity, and population structure of Juniperus communis L. var. communis and J. communis L. var. saxatilis Pall. (= J. sibirica Burgsd. = J. nana Wild), growing on the territory of Russia, J. c. var. communis from Sweden, and J. c. var. depressa Pursh from Northern America (Alaska), was investigated. The total level of genetic variation of these varieties was found to be higher than the values obtained for the other conifers. The population of J. c. var. depressa from Alaska and J. c. var. saxatilis from Sakhalin were noticeably different from all other populations examined. Between the other samples, no substantial genetic differences were observed. These populations were characterized by weak interpopulation differentiation along with the absence of expressed geographical pattern of the allele frequency spatial distribution. The only exception was the procumbent form of common juniper from the high mountain populations of South and North Ural, which was somewhat different from the others.


Genetic Distance Late Glacial Allozyme Locus Allozyme Analysis Juniperus Communis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farjon, A.A., World Checklist and Bibliography of Conifers, Kew: The Royal Botanic Gardens, 2nd ed., 2001.Google Scholar
  2. 2.
    Arsen’eva, T.V., Comparative Anatomical Study of Juniperus communis (Cupressaceae) in Relation to Life Form Change, in Problemy botaniki na rubezhe XX–XXI vekov (Challenges in Botany at the Turn of the 20th and 21st Centuries), St. Petersburg, 1998, vol. 1, pp. 6–7.Google Scholar
  3. 3.
    Thomas, P.A., El-Barghathi, M., and Polwart, A., Biological Flora of the British Isles: Juniperus communis L., J. Ecol., 2007, vol. 95, pp. 1404–1440.CrossRefGoogle Scholar
  4. 4.
    Atlas arealov i resursov lekarstvennykh rastenii SSSR (Atlas of Distribution and Resources of Medicinal Plants), Moscow: Kartografiya, 1980.Google Scholar
  5. 5.
    Derev’ya i kustarniki SSSR (Trees and Shrubs of the Soviet Union), Leningrad: Akad. Nauk SSSR, 1949, vol. 1.Google Scholar
  6. 6.
    Dzhanaeva, V.M., Opredelitel’ semeistva mozhzhevelovykh (Identification Guide for Juniper Family), Frunze: Ilim, 1969.Google Scholar
  7. 7.
    Kachalov, A.A., Derev’ya i kustarniki: spravochnik (Trees and Shrubs: Reference Book), Kolesnikov, A.I., Ed., Moscow: Lesnaya promyshlennost’, 1970.Google Scholar
  8. 8.
    Flora SSSR (Flora of the Soviet Union), Leningrad: Akad. Nauk SSSR, 1934, vol. 1.Google Scholar
  9. 9.
    Arealy derev’ev i kustarnikov SSSR (Distribution Area of Trees and Shrubs of the Soviet Union), Leningrad: Nauka, 1977, vol. 1.Google Scholar
  10. 10.
    Kozubov, G.M. and Muratova, E.N., Sovremennye golosemennye (Modern Gymnosperms), Leningrad: Nauka, 1986.Google Scholar
  11. 11.
    Kapper, O.G., Khvoinye porody (Conifer Trees), Moscow: Goslesbumizdat, 1954.Google Scholar
  12. 12.
    Koropachinskii, I.Yu. and Vstovskaya, T.N., Drevesnye rasteniya Aziatskoi Rossii (Arboreal Plants of Asian Russia), Novosibirsk: Geo, 2002.Google Scholar
  13. 13.
    Van der Merwe, M., Winfield, M.O., Arnold, G.M., and Parker, J.S., Spatial and Temporal Aspects of the Genetic Structure of Juniperus communis Populations, Mol. Ecol., 2000, vol. 9, pp. 379–386.CrossRefPubMedGoogle Scholar
  14. 14.
    Border Forest Trust. Common Juniper (Juniperus communis L.): A Review of Its Biology and Status in the Scottish Borders, in Border Forest Trust Occasional Paper, 1997, no. 1.Google Scholar
  15. 15.
    Khantemirova, E.V. and Semerikov, V.L., Allozyme Polymorphism of Common Juniper Verieties, Lesovedenie, 2009, no. 1, pp. 74–77.Google Scholar
  16. 16.
    Adams, R.P., Junipers of the World: The Genus Juniperus, Vancouver: Trafford, 2004.Google Scholar
  17. 17.
    Adams, R.P., Hsieh, C., Murata, J., and Pandey, R.N., Systematics of Juniperus from Eastern Asia Based on Random Amplified Polymorphic DNAs (RAPDs), Biochem. Syst. Ecol., 2002, vol. 30, pp. 231–241.CrossRefGoogle Scholar
  18. 18.
    Adams, R.P. and Pandey, R.N., Analysis of Juniperus communis and Its Varieties Based on DNA Fingerprinting, Biochem. Syst. Ecol., 2003, vol. 31, pp. 1271–1278.CrossRefGoogle Scholar
  19. 19.
    Filipowicz, N., Piotrowski, A., Ochocka, R., and Aszemborska, M., The Phytochemical and Genetic Survey of Common and Dwarf Juniper (Juniperus communis and Juniperus nana) Identifies Chemical Races and Close Taxonomic Identity of the Species, Planta Med., 2006, vol. 72, pp. 850–853.CrossRefPubMedGoogle Scholar
  20. 20.
    Podogas, A.V., Shurkhal, A.V., Semerikov, V.L., and Rakitskaya, T.A., Genetic Variation of Needle Enzymes in Siberian Cedar Pine Pinus sibirica Du Tour, Genetika (Moscow), 1991, vol. 27, no. 4, pp. 695–703.Google Scholar
  21. 21.
    Harris, H. and Hopkinson, D.A., Handbook of Enzyme Electrophoresis, Amsterdam: North-Holland Publ., 1976.Google Scholar
  22. 22.
    Rohlf, F.J., NTSYSpc: Numerical Taxonomy and Multvariate Analysis System. 2.02c, New York: Exeter Software, 1998.Google Scholar
  23. 23.
    Swofford, D.L. and Selander, R.B., BIOSYS-1: A FORTRAN Program for the Comprehensive Analysis of Electrophoresis Data in Population Genetics and Systematics, J. Heredity, 1981, vol. 72, pp. 281–283.Google Scholar
  24. 24.
    Nei, M., F-Statistics and Analysis of Gene Diversity in Subdivided Populations, Ann. Hum. Genet., 1977, vol. 41, pp. 225–233.CrossRefPubMedGoogle Scholar
  25. 25.
    Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol. 83, pp. 583–590.Google Scholar
  26. 26.
    Mantel, N.A., The Detection of Disease Clustering and Generalized Regression Approach, Cancer Res., 1967, vol. 27, pp. 209–220.PubMedGoogle Scholar
  27. 27.
    Krutovskii, K.V., Politov, D.V., Altukhov, Yu.P., et al., Genetic Variation in Siberian Cedar Pine Pinus sibirica Du Tour: IV. Genetic Diversity and Genetic Differentiation among Populations, Genetika (Moscow), 1989, vol. 25, no. 11, pp. 2009–2032.Google Scholar
  28. 28.
    Michalczyk, I.M., Sebastiani, F., Buonamici, A., et al., Characterization of Highly Polymorphic Nuclear Microsatellite Loci in Juniperus communis L., Mol. Ecol. Notes, 2006, vol. 6, no. 2, pp. 346–348.CrossRefGoogle Scholar
  29. 29.
    Urusov, V.M., Genezis rastitel’nosti i ratsional’noe prirodopol’zovanie na Dal’nem Vostoke (Vegetation Genesis and Environmental Management in the Far East), Vladivostok: DVO Akad. Nauk SSSR, 1988.Google Scholar
  30. 30.
    Garcia, D., Effects of Seed Dispersal of Juniperus communis Recruitment on a Mediterranean Mountain, J. Vegetation Sci., 2001, vol. 12, pp. 839–848.CrossRefGoogle Scholar
  31. 31.
    Zhizn’ zhivotnykh (Life of Animals), Moscow: Prosveshchenie, 1970, vol. 5.Google Scholar
  32. 32.
    Politov, D.V., Population Genetics and Evolution Relationships among Pinus Species (Family Pinaceae) of Northern Eurasia, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Inst. General Genetics Russian Acad. Sci., 2007, p. 45.Google Scholar
  33. 33.
    Willis, K.J. and Van Andel, T.H., Trees or not Trees? The Environments of Central and Eastern Europe during the Last Glaciation, Quaternary Sci. Rev., 2004, vol. 23, pp. 2269–2287.CrossRefGoogle Scholar
  34. 34.
    Flint, R.F., Glacial and Quaternary Geology, New York: Wiley, 1971.Google Scholar
  35. 35.
    Bennett, K.D., Boreham, S., Sharp, M.J., and Switsur, V.R., Holocene History of Environment, Vegetation and Human Settlement on Catta Ness, Lunnasting, Shetland, J. Ecol., 1992, vol. 80, pp. 241–273.CrossRefGoogle Scholar
  36. 36.
    Yu, Z., Late Quaternary Paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada; Pollen, Stomata and Macrofossils, Rev. Paleobot. Palynol., 1997, vol. 96, pp. 241–254.CrossRefGoogle Scholar
  37. 37.
    Pisaric, M.F.J., MacDonald, G.M., Velichko, A.A., and Cwynar, L.C., The Late-Glacial and Post-Glacial Vegetation History of the Northwestern Edge of Beringia, Based on Pollen, Stomata and Tree Stump Evidence, Quaternary Sci. Rev., 2001, vol. 20, pp. 235–245.CrossRefGoogle Scholar
  38. 38.
    Bjorkman, L., Feurdean, A., Cinthio, K., et al., Late Glacial and Early Holocene Vegetation Development in the Gutaiului Montains, Northwestern Romania, Quaternary Sci. Rev., 2002, vol. 21, pp. 1039–1059.CrossRefGoogle Scholar
  39. 39.
    Heinz, C. and Barbaza, M., Environmental Changes during the Late Glacial and Post-Glacial in the Central Pyrenees (France): New Charcoal Analysis and Archaeological Data, Rev. Palaeobotany Palynol., 1998, vol. 104, no. 1, pp. 1–17.CrossRefGoogle Scholar
  40. 40.
    Nowak, C.L., Nowak, R.S., Tausch, R.J., and Wigand, P.E., Tree and Shrub Dynamics in Northwestern Great-Basin Woodland and Shrub Steppe during the Late-Pleistocene and Holocene, Am. J. Botany, 1994, vol. 81, no. 3, pp. 265–277.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations