Russian Journal of Genetics

, Volume 46, Issue 1, pp 69–80 | Cite as

Phylogenetic analysis of smelts (Osmeridae) based on the variation of cytochrome b gene

  • L. A. Skurikhina
  • A. D. Kukhlevsky
  • A. G. Oleinik
  • N. E. Kovpak
Animal Genetics


Putative phylogenetic relationships between all smelt species inhabiting Russian waters were studied using RFLP and the data on divergence between nucleotide sequences of the mitochondrial gene encoding cytochrome b. All types of phylogenetic trees (NJ, MP, and Bayesian) displayed stable clustering into isolated groups corresponding to the division of the subfamily Osmerinae into three genera, Mallotus, Osmerus, and Hypomesus. It was demonstrated that the Mallotus phylum was the first to diverge from a hypothetical common ancestor of the smelts. Later, it divided into two clusters corresponding to the modern subspecies Mallotus villosus villosus and M. v. catervarius. The phylum of the genus Osmerus diverged later than the genus Mallotus and also divided into two clusters, one including O. mordax of the Pacific (Sea of Japan) and Arctic (Kara and Barents Seas) basins and the other, anadromous and resident ecotypes of the O. eperlanus from the Baltic Sea basin. The smelts of the genus Hypomesus is the youngest phylogenetic group among the taxa studied; it forms three individual clusters matching the species H. olidus, H. nipponensis, and H. japonicus. The proposed phylogenetic hypothesis is discussed from the standpoint of its compliance with the phylogenetic constructions based on the external morphological and osteological traits.


Maximum Parsimony Bootstrap Support Neighbor Join Tree Neighbor Join RFLP Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chereshnev, I.A., Shestakov, A.V., and Frolov, S.V., On the Systematics of Species of the Genus Hypomesus (Osmeridae) of Peter the Great Bay of the Sea of Japan, Biol. Morya (Vladivostok), 2001, vol. 27, no. 5, pp. 340–346.Google Scholar
  2. 2.
    McLean, J.E. and Taylor, E.B., Resolution of Population Structure in a Species with High Gene Flow: Microsatellite Variation in the Eulachon (Osmeridae: Thaleichthys pacificus), Mar. Biol. (Berlin), 2001, vol. 139, pp. 411–420.CrossRefGoogle Scholar
  3. 3.
    Saint-Laurent, R., Legault, M., and Bernatchez, L., Divergent Selection Maintains Adaptive Differentiation despite High Gene Flow between Sympatric Rainbow Smelt Ecotypes (Osmerus mordax Mitchill), Mol. Ecol., 2003, vol. 12, pp. 315–330.CrossRefPubMedGoogle Scholar
  4. 4.
    Sendek, D.S., Studenov, I.I., Sherstkov, V.S., et al., Genetic Differentiation of Osmerid Fish of the Genus Osmerus (Osmeridae, Salmoniformes) at the European North of Russia, in Lososevidnye ryby Vostochnoi Fennoskandii (Salmonid Fishes of Eastern Fennoscandia), Petrozavodsk: Kar. Nauchn. Tsents, Russ. Acad. Sci., 2005, pp. 148–157.Google Scholar
  5. 5.
    Lecomte, F. and Dodson, J.J., Distinguishing Trophic and Habitat Partitioning among Sympatric Populations of the Estuarine Fish Osmerus mordax Mitchill, Fish Biol., 2005, vol. 66, pp. 1601–1623.CrossRefGoogle Scholar
  6. 6.
    Fu, C., Lu, J., Wu, J., et al., Phylogenetic Relationships of Salangid Fishes (Osmeridae, Salanginae) with Comments on Phylogenetic Placement of the Salangids Based on Mitochondrial DNA Sequences, Mol. Phylogenet. Evol., 2005, vol. 35, pp. 76–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Bradbury, I.R., Coulson, M.W., Campana, S.E., and Bentzen, P., Morphological and Genetic Differentiation in Anadromous Smelt Osmerus mordax (Mitchill): Disentangling the Effects of Geography and Morphology on Gene Flow, Fish Biol., 2006, vol. 69,suppl. C, pp. 95–114.CrossRefGoogle Scholar
  8. 8.
    Coulson, M.W., Paterson, I.G., Green, A., et al., Characterization of Diand Tetranucleotide Microsatellite Markers in Rainbow Smelt (Osmerus mordax), Mol. Ecol. Not., 2006, vol. 6, pp. 942–944.CrossRefGoogle Scholar
  9. 9.
    Dodson, J.J., Tremblay, S., Colombani, F., et al., Trans-Arctic Dispersals and the Evolution of a Circumpolar Marine Fish Species Complex, the Capelin (Mallotus villosus), Mol. Ecol., 2007, vol. 16, pp. 5030–5043.CrossRefPubMedGoogle Scholar
  10. 10.
    Ilves, K.L. and Tailor, E.B., Evolutionary and Biogeographical Patterns within the Smelt Genus Hypomesus in the North Pacific Ocean, J. Biogeogr., 2008, vol. 35, pp. 48–64.Google Scholar
  11. 11.
    Præel, K., Westgaard, J.I., Fevolden, S.E., and Christiansen, J.S., Circumpolar Genetic Population Structure of Capelin Mallotus villosus, Mar. Ecol. Prog. Ser., 2008, vol. 360, pp. 189–199.CrossRefGoogle Scholar
  12. 12.
    McAllister, D.E., A Revision of the Smelt Family Osmeridae, Bull. Nat. Mus. Can., 1963, no. 191, p. 53.Google Scholar
  13. 13.
    Klyukanov, V.A., Genesis, Dispersal, and Evolution of Osmeridae, in Osnovy klassifikatsii i filogenii lososevidnykh ryb (Priciples of Classification and Phylogeny of Salmoniformes), Leningrad: Zool. Inst. Akad. Nauk SSSR, 1977, pp. 13–27.Google Scholar
  14. 14.
    Begle, D.P., Relationships of the Osmeroid Fishes and the Use of Reductive Characters in Phylogenetic Analysis, Syst. Zool., 1991, vol. 40, no. 1, pp. 33–53.CrossRefGoogle Scholar
  15. 15.
    Nelson, J.S., Fishes of the World, New York: Wiley, 1994.Google Scholar
  16. 16.
    Johnson, G.D. and Patterson, C., Relationships of Lower Euteleostean Fishes, Interrelationships of Fishes, Stiassny, M.J., Parenty, L.R., and Johnson, E.D., Eds., San Diego: Academic, 1996, pp. 251–332.Google Scholar
  17. 17.
    Brown, W.M., George, M.J., and Wilson, A.C., Rapid Evolution of Animal Mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 1967–1971.CrossRefPubMedGoogle Scholar
  18. 18.
    Kocher, T.D., Thomas, W.K., Meyer, A., et al., Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6196–6200.CrossRefPubMedGoogle Scholar
  19. 19.
    Irwin, D.M., Kocher, T.D., and Wilson, A.C., Evolution of the Cytochrome b Gene of Mammals, J. Mol. Evol., 1991, vol. 32, pp. 128–144.CrossRefPubMedGoogle Scholar
  20. 20.
    Bartlett, S.E. and Davidson, W.S., Identification of Thunnus Tuna Species by the Polymerase Chain Reaction and Direct Sequence Analysis of Their Mitochondrial Cytochrome b Genes, Can. J. Fish. Aquat. Sci., 1991, vol. 48, pp. 309–317.CrossRefGoogle Scholar
  21. 21.
    Kiril’chik, S.V. and Slobodyanyuk, S.Ya., Evolution of the Cytochrome b Gene Fragment from Mitochondrial DNA in Some Baikalian and non-Baikalian Cottoidei Fishes, Izv. Akad. Nauk SSSR, Ser. Biol., 1997, vol. 31, no. 1, pp. 168–175.Google Scholar
  22. 22.
    Pavlov, S.D., Kolesnikov, A.A., Melnikova, M.N., and Ushakova, M.V., Genetic Divergence of Mykizha (Parasalmo (Oncorhynchus) mykiss) from Kamchatka Inferred from Restriction Analysis and Sequencing of mtDNA Cytochrome b Gene, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1695–1701.CrossRefGoogle Scholar
  23. 23.
    Kartavtsev, Y.P., Park, T.-J., Vinnikov, K.A., et al., Cytochrome b (Cyt-b) Gene Sequence Analysis in Six Flatfish Species (Teleostei, Pleuronectidae), with Phylogenetic and Taxonomic Insights, Mar. Biol. (Berlin), 2007, vol. 152, pp. 757–773.CrossRefGoogle Scholar
  24. 24.
    Johns, G.C. and Avise, J.C., A Comparative Summary of Genetic Distances in the Vertebrates from the Mitochondrial Cytochrome b Gene, Mol. Biol. Evol., 1985, vol. 15, pp. 1481–1490.Google Scholar
  25. 25.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.Google Scholar
  26. 26.
    Gharrett, A.J., Gray, A.K., and Brykov, V.A., Mitochondrial DNA Variation in Alaskan Coho Salmon, Onchorhynchus kisutch, Fish. Bull., 2001, vol. 99, pp. 528–544.Google Scholar
  27. 27.
    Sevilla, R.G., Diez, A., Noren, M., et al., Primers and Polymerase Chain Reaction Conditions for DNA Barcoding Teleost Fish Based on the Mitochondrial Cytochrome b and Nuclear Rhodopsin Genes, Mol. Ecol. Not., 2007, vol. 7, pp. 730–734.CrossRefGoogle Scholar
  28. 28.
    Nei, M. and Li, W.-H., Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 5269–5273.CrossRefPubMedGoogle Scholar
  29. 29.
    Nei, M. and Tajima, F., DNA Polymorphism Detectable by Restriction Endonucleases, Genetics, 1981, vol. 97, pp. 145–163.PubMedGoogle Scholar
  30. 30.
    Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  31. 31.
    Hendy, M.D. and Penny, D., Branch and Bound Algorithms to Determine Minimal Evolutionary Trees, Math. Biosci., 1982, vol. 59, pp. 277–290.CrossRefGoogle Scholar
  32. 32.
    Templeton, A.R., Phylogenetic Inference from Restriction Endonuclease Cleavage Site Maps with Particular Reference to the Evolution of Humans and the Apes, Evolution, 1983, vol. 37, pp. 221–244.CrossRefGoogle Scholar
  33. 33.
    Felsenstein, J., Confidence Limits on Phylogenies: An Approach Using Bootstrap, Evolution, 1985, vol. 39, pp. 783–791.CrossRefGoogle Scholar
  34. 34.
    Felsenstein, J., PHYLIP (Phylogeny Inference Package) Version 3.67, Washington, DC: Univ. Washington, 2007.Google Scholar
  35. 35.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0, Mol. Biol. Evol., 2007, vol. 24, pp. 1596–1599.CrossRefPubMedGoogle Scholar
  36. 36.
    Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian Inference of Phylogeny, Bioinformatics, 2001, vol. 17, pp. 754–755.CrossRefPubMedGoogle Scholar
  37. 37.
    Hasegawa, M., Kishino, H., and Yano, T., Dating of Human-Ape Splitting by a Molecular Clock of Mitochondrial DNA, Mol. Evol., 1985, vol. 22, pp. 160–174.CrossRefGoogle Scholar
  38. 38.
    Swofford, D.L., PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods): Version, 4.0 b10, Sunderland: Sinauer, 2002.Google Scholar
  39. 39.
    Posada, D. and Crandall, K., A. Modeltest: Testing the Model of DNA Substitution, Bioinformatics, 1998, vol. 14, no. 9, pp. 817–818.CrossRefPubMedGoogle Scholar
  40. 40.
    Howes, G.J. and Sanford, C.P.J., The Phylogenetic Position of the Plecoglossidae (Teleostei, Salmoniformes), with Comments on the Osmeridae and Osmeroidei, Proc. V Congr. Eur. Ichthyol., Stockholm, 1987, pp. 17–30.Google Scholar
  41. 41.
    Klyukanov, V.A., The Status of Osmeridae in the System of Order Salmoniformes, Vopr. Ikhtiol., 1975, vol. 15, no. 1, pp. 3–20.Google Scholar
  42. 42.
    Chapman, W.M., The Osteology and Relationships of the Osmerid Fishes, J. Morphol., 1941, vol. 69, no. 2, pp. 279–301.CrossRefGoogle Scholar
  43. 43.
    Wilson, M.V.H. and Williams, R.R.G., New Paleocene Genus and Species of Smelt (Teleostei: Osmeridae) from Freshwater Deposits of the Paskapoo Formation, Alberta, Canada and Comments on Osmerid Phylogeny, J. Vert. Paleon., 1991, vol. II, no. 4, pp. 434–451.Google Scholar
  44. 44.
    Skurikhina, L.A., Oleinik, A.G., and Pan’kova, M.V., Comparative Analysis of Mitochondrial DNA Diversity in Smelts, Biol. Morya (Vladivostok), 2004, vol. 30, no. 4, pp. 289–295.Google Scholar
  45. 45.
    Hamada, K., Taxonomic and Ecological Studies of the Genus Hypomesus of Japan, Mem. Fac. Fish. Hokkaido Univ., 1961, vol. 9, pp. 1–55.Google Scholar
  46. 46.
    Klyukanov, V.A., Morphological Basis of the Systematics of Smelts of the Genus Hypomesus (Osmeridae), Zool. Zh., 1970, vol. 49, no. 10, pp. 1534–1541.Google Scholar
  47. 47.
    Klyukanov, V.A., Taxonomy and Phylogenetic Relationships of the Genera Osmerus and Hypomesus (Osmeridae) and Their Dispersion, Zool. Zh., 1975, vol. 54, pp. 590–595.Google Scholar
  48. 48.
    Gritsenko, O.F. and Churikov, A.A., Systematics of Smelts of the Genus Hypomesus (Salmoniformes, Osmeridae) from the Asian Coastal Waters of the Pacific Ocean, Zool. Zh., 1983, vol. 62, no. 4, pp. 553–562.Google Scholar
  49. 49.
    Saruwatari, T., Lopez, J.A., and Pietsch, T.W., A Revision of the Osmerid Genus Hypomesus Gill (Teleostei: Salmoniformes), with the Description of a New Species from the Southern Kuril Islands, Species Diversity, 1997, vol. 2, pp. 59–82.Google Scholar
  50. 50.
    Shedko, S.V., On Species Composition of Smelts (Osmeridae) in Waters of Primor’e, Vopr. Ikhtiol., 2001, vol. 41, no. 2, pp. 261–264.Google Scholar
  51. 51.
    Ilves, K.L. and Tailor, E.B., Are Hypomesus chishimaensis and H. nipponensis (Osmeridae) Distinct Species? A Molecular Assessment Using Comparative Sequence Data from Five Genes, Copeia, 2007, pp. 180–185.Google Scholar
  52. 52.
    Rumyantsev, A.I., Capelin of the Sea of Japan, Izv. TINRO, 1946, vol. 22, pp. 35–74.Google Scholar
  53. 53.
    Andriyashev, A.P., Ryby severnykh morei SSSR (Fishes of the Northern Seas of the Soviet Union), Moscow: Akad. Nauk SSSR, 1954.Google Scholar
  54. 54.
    Walters, V., Fishes of Western Arctic America and Eastern Arctic Siberia, Bull. Amer. Mus. Nat. Hist., 1955, vol. 106, pp. 255–368.Google Scholar
  55. 55.
    Klyukanov, V.A., Systematic Relationships between the Atlantic and the Pacific Capelins Mallotus villosus (Muller) and Osteological Characteristic of the Genus Mallotus (Pisces, Osmeridae), Zool. Zh., 1972, vol. 51, pp. 855–862.Google Scholar
  56. 56.
    Stergiou, K., Capelin Mallotus villosus (Pisces: Osmeridae), Glaciations and Speciation: A Nomothetic Approach to Fisheries Ecology and Reproductive Biology, Mar. Ecol. Prog. Ser., 1989, vol. 56, pp. 211–224.CrossRefGoogle Scholar
  57. 57.
    Dodson, J.J., Carscadden, J.E., Bernatchez, L., and Colombani, F., Relationship between Spawning Mode and Phylogeographic Structure in Mitochondrial DNA of North Atlantic Capelin Mallotus villosus, Mar. Ecol. Prog. Ser., 1991, vol. 76, pp. 103–113.CrossRefGoogle Scholar
  58. 58.
    Vilhjálmsson, H., Capelin (Mallotus villosus) in the Iceland-East Greenland-Jan Mayen Ecosystem, ICES J. Marin. Sci., 2002, vol. 59, pp. 870–883.CrossRefGoogle Scholar
  59. 59.
    Skurikhina, L.A., Oleinik, A.G., and Kovpak, N.E., Mitochondrial DNA Variation in Pacific Capelin (Mallotus villosus catervarius) from the Sea of Okhotsk, Inferred from PCR-RFLP Analysis, Russ. J. Genet., 2008, vol. 44, no. 7, pp. 812–820.CrossRefGoogle Scholar
  60. 60.
    Lindberg, G.U. and Legeza, M.I., Ryby Yaponskogo morya i sopredel’nykh chastei Okhotskogo i Zheltogo morei (Fishes of the Sea of Japan and the Adjacent Areas of the Sea of Okhotsk and the Yellow Sea), Moscow: Nauka, 1965.Google Scholar
  61. 61.
    Nellbring, S., The Ecology of Smelts (Genus Osmerus): A Literature Review, Nordic J. Freshwater Res., 1989, vol. 65, pp. 116–145.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • L. A. Skurikhina
    • 1
  • A. D. Kukhlevsky
    • 1
  • A. G. Oleinik
    • 1
  • N. E. Kovpak
    • 1
  1. 1.Zhirmunsky Institute of Marine Biology, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations