Russian Journal of Genetics

, 45:1256 | Cite as

Multifunctional regulatory mutation in Bacillus subtilis flavinogenesis system

  • R. A. Kreneva
  • D. V. Karelov
  • N. V. Korolkova
  • A. S. Mironov
  • D. A. Perumov
Short Communications


Among Bacillus subtilis riboflavin-resistant mutants we identified one, which differed from other regulatory mutants by overproduction of riboflavin and simultaneous upregulation of the ribC gene encoding flavokinase/FAD-synthase. Genetic and biochemical analysis showed that the ribU1 mutation determines a trans-acting factor that simultaneously regulates activity of riboflavin and truB-ribC-rpsO operons. Regulatory activity of the ribU1 mutation comprises about 10% of Rfn element activity on interaction with flavins. The ribU1 mutation can be presumably ascribed to a gene of the transcriptional regulators family.


Bacillus Subtilis Regulatory Mutation Leader Region Transcriptional Terminator Transcriptional Regulator Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Perkins, J.B and Pero, J., Biosynthesis of Riboflavin, Biotin, Folic Acid, and Cobalamin, Bacillus subtilis and Its Closest Relatives: From Genes to Cells, Sonenshein, A.L., Hoch, J.A., and Losick, R., Eds., Washington, DC: Am. Soc. Microbiol., 2002, pp. 271–286.Google Scholar
  2. 2.
    Kreneva, R.A., Solovieva, I.M., Errais, L.L., et al., Investigation of the Regulation Mechanism of the ribC Gene Activity in Bacillus subtilis, Russ. J. Genet., 2001, vol. 37,no. 9, pp. 1300–1303.CrossRefGoogle Scholar
  3. 3.
    Solovieva, I.M., Kreneva, R.A., Errais Lopes, L., et al., The Riboflavin Kinase Encoding Gene ribR of Bacillus subtilis Is a Part of 10 Kb Operon, Which Is Negatively Regulated by the yrzC Gene Product, FEMS Microbiol. Lett., 2005, vol. 243, pp. 51–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Mironov, A.S., Gusarov, I., Rafikov, R., et al., Sensing Small Molecules by Nascent RNA: A Mechanism to Control Transcription in Bacteria, Cell, 2002, vol. 111, pp. 747–756.PubMedCrossRefGoogle Scholar
  5. 5.
    Winkler, W., Nahvi, A., Breaker, R.R., Thiamine Derivatives Bind Messenger RNAs to Regulate Bacterial Gene Expression, Nature, 2002, vol. 419, pp. 952–956.PubMedCrossRefGoogle Scholar
  6. 6.
    Gelfand, M., Mironov, A.A., Jomantas, J., et al., A Conserved RNA Structure Element Involved in the Regulation of Bacterial Riboflavin Synthesis Genes, Trends Genet., 1999, vol. 15, pp. 439–442.PubMedCrossRefGoogle Scholar
  7. 7.
    Mironov, A.S., Karelov, D.V., Solovieva, I.M., et al., Relationship between the Secondary Structure and the Regulatory Activity of the Leader Region of the Riboflavin Biosynthesis Operon in Bacillus subtilis, Russ. J. Genet., 2008, vol. 44, no. 4, pp. 467–473.CrossRefGoogle Scholar
  8. 8.
    Gusarov, I.I., Kreneva, R.A., Podchernyaev, D.A., et al., Riboflavin Biosynthesis Genes of Bacillus amiloliquefaciens: Primary Structure, Organization, and Activity Regulation, Mol. Biol. (Moscow), 1997, vol. 31, no. 3, pp. 446–453.Google Scholar
  9. 9.
    Kreneva, R.A. and Perumov, D.A., Genetic Mapping of Regulatory Mutations of Bacillus subtilis Riboflavin Operon, Mol. Gen. Genet., 1990, vol. 222, pp. 467–469.PubMedCrossRefGoogle Scholar
  10. 10.
    Saito, H. and Miura, K.I., Preparation of Transforming DNA by Phenol Treatment, Biochim. Biophys. Acta, 1963, vol. 42, pp. 619–629.CrossRefGoogle Scholar
  11. 11.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989, 2nd ed.Google Scholar
  12. 12.
    Anagnostopoulos, C. and Spizizen, J., Requirements for Transformation in Bacillus subtilis, J. Bacteriol., 1961, vol. 81, pp. 741–746.PubMedGoogle Scholar
  13. 13.
    Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab., 1972.Google Scholar
  14. 14.
    Hagihara, T., Fujio, T., Asaki, K., et al., Cloning of FAD Synthetase from Corynebacterium ammoniagenes and Its Application to FAD and FMN Production, Appl. Microbiol. Biotechnol., 1995, vol. 42, pp. 724–729.PubMedCrossRefGoogle Scholar
  15. 15.
    Solovieva, I.M., Tarasov, K.V., and Perumov, D.A., Main Physicochemical Features of Monofunctional Flavokinase from Bacillus subtilis, Biochemistry (Moscow), 2003, vol. 68, pp. 212–217.CrossRefGoogle Scholar
  16. 16.
    Perkins, J.B., Sloma, A., Hermann, T., et al., Genetic Engineering of Bacillus subtilis for the Commercial Production of Riboflavin, J. Industrial Microbiol. Biotechnol., 1999, vol. 22, pp. 8–18.CrossRefGoogle Scholar
  17. 17.
    Gusarov, I.I., Kreneva, R.A., Rybak, K.V., et al., Primary Structure and Functional Activity of ribC Gene in Bacillus subtilis, Mol. Biol. (Moscow), 1997, vol. 31,no. 5, pp. 820–825.Google Scholar
  18. 18.
    Shazand, K., Tucker, J., Grunberg-Manago, M., et al., Similar Organization of the nusA-infB Operon in Bacillus subtilis and Escherichia coli, J. Bacteriol., 1993, vol. 175,no. 10, pp. 2280–2287.Google Scholar
  19. 19.
    Stepanov, A.I., Tul’chinskaya, L.S., Berezovskii, V.M., et al., Riboflavin and Lumiflavin Analogs and Alloxazin Derivatives: Influence of Analogs on Riboflavin Biosynthesis and Bacillus subtilis Growth, Genetika (Moscow), 1975, vol. 11, no. 9, pp. 116–123.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • R. A. Kreneva
    • 1
  • D. V. Karelov
    • 1
  • N. V. Korolkova
    • 2
  • A. S. Mironov
    • 2
  • D. A. Perumov
    • 1
  1. 1.Department of Molecular and Radiation Biophysics, Konstantinov Institute of Nuclear PhysicsRussian Academy of SciencesGatchinaRussia
  2. 2.Research Institute of Genetics and Selection of Industrial MicroorganismsMoscowRussia

Personalised recommendations