Russian Journal of Genetics

, Volume 45, Issue 3, pp 276–286 | Cite as

Conditional lethal mutations shift the genome from stability to instability

  • B. F. Chadov
  • E. V. Chadova
  • E. A. Khotskina
  • N. B. Federova
Molecular Genetics


The phenomenology of genomic destabilization is described in Drosophila melanogaster mutants containing radiation-induced conditional dominant lethals in the X chromosome and in autosome 2. Destabilization manifests itself as (1) the loss or decrease of lethality of previously lethal mutations; (2) the loss of expression of visible dominant mutations in an opposite homolog; (3) chromosomal instability resulting in the loss of the X chromosome in germline and somatic cells; (4) the occurrence of novel mutations (secondary mutagenesis); (5) the occurrence of single and mass modifications; (6) disturbances in individual development (formation of morphoses). The key event for the shift of the genome from the stable state into the unstable one is the occurrence of a conditional dominant lethal mutation.


Dominant Mutation Lethal Mutation Mutant Male Lethal Action Hybrid Dysgenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chadov, B.F., Chadova, E.V., Kopyl, S.A., and Fedorova, N.B., A New Class of Mutations in Drosophila melanogaster, Dokl. Ross. Akad. Nauk, 2000, vol. 373, no. 5, pp. 714–717.Google Scholar
  2. 2.
    Chadov, B.F., Mutations in the Regulatory Genes in Drosophila melanogaster, in Biodiversity and Dynamics of Ecosystems in North Eurasia, Proc. Int. Conf., Novosibirsk, 2000, pp. 16–18.Google Scholar
  3. 3.
    Chadov, B.F., Mutations Able to Initiate Speciation, Evolyutsionnaya biologiya (Evolutionary Biology), vol. 1, Stegnii, V.N, Ed., Tomsk: Tomsk Gos. Univ., 2001, pp. 138–162.Google Scholar
  4. 4.
    Chadov, B.F., Chadova, E.V., Kopyl, S.A., et al., From Genetics of Intraspecific Differences to Genetics of Intraspecific Similarity, Russ. J. Genet., 2004, vol. 40, no. 9, pp. 1157–1172.CrossRefGoogle Scholar
  5. 5.
    Chadov, B.F., Attributes of Intraspecific Similarity and the Specificity of Mendel’s Approach to Heredity, Filosofiya Nauki, 2005, no. 3 (26), pp. 94–114.Google Scholar
  6. 6.
    Chadov, B.F., Chadova, E.V., Kopyl, S.A., and Fedorova, N.B., Delayed Activation of the Maternal Genome during Early Development of Drosophila, Dokl. Ross. Akad. Nauk, 2001, vol. 378, no. 6, pp. 841–845.Google Scholar
  7. 7.
    Chadov, B.F., Chadova, E.V., Khotskina, E.A., et al., The Main Effect of Chromosomal Rearrangement is Changing the Action of Regulatory Genes, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 893–902.CrossRefGoogle Scholar
  8. 8.
    Chadov, B.F. and Fedorova, N.B., The Elementary Event of Development, Dokl. Ross. Akad. Nauk, 2003, vol. 389, no. 3, pp. 408–412.Google Scholar
  9. 9.
    Chadov, B.F., The “Image” of the Regulatory Gene in Experiments with Drosophila, Russ. J. Genet., 2002, vol. 38, no. 7, pp. 869–880.CrossRefGoogle Scholar
  10. 10.
    Chadov B.F. Facultative Dominant Lethals: Genetics, Ontogeny, and Phylogeny, Evolyutsionnaya biologiya (Evolutionary Biology), vol. 2, Stegnii, V.N., Ed., Tomsk: Tomsk Gos. Univ., 2001, pp. 118–142.Google Scholar
  11. 11.
    Chadov, B.F., Chadova, E.V., Kopyl, S.A., et al., Genes Controlling Ontogeny: Morphosis, Phenocopies, Dimorphs, and other Visible Expressions of Mutant Genes, Russ. J. Genet., 2004, vol. 40, no. 3, pp. 353–365.CrossRefGoogle Scholar
  12. 12.
    Chadov, B.F., Ontogenes in Drosophila melanogaster: Genetic Features and Role in Onto-and Phylogenesis, Sovremennye problemy genetiki, radiobiologii, radioekologii i evolyutsii (Modern Problems of Genetics, Radiobiology, Radioecology, and Evolution), Proc. Second Int. Conf. on the Occasion of the 105th Anniversary of N.V. Timofeev-Resovsky), Korogodina, V.L, Chin’i, A.A, and Durante, M., Eds., Dubna: Ob. Inst. Yad. Issled., 2007, vol. 1, pp. 80–91.Google Scholar
  13. 13.
    Chadov, B.F., Chadova, E.V., Khotskina, E.A., and Fedorova, N.B., Mutation in Ontogeny—Destabilizing of Genome—Morphogenesis, Evolyutsionnaya biologiya (Evolutionary Biology), vol. 3, Stegnii, V.N, Ed., Tomsk: Tomsk Gos. Univ., 2001, pp. 92–106.Google Scholar
  14. 14.
    Lindsley, D.L. and Grell, E.H., Genetic Variation of Drosophila melanogaster, Carnegie Inst. Wash. Publ., 1968, no. 627, p. 472.Google Scholar
  15. 15.
    Bridges, C.B., Nondisjunction as Proof of the Chromosome Theory of Heredity, Genetics, 1916, vol. 1, pp. 107–162.PubMedGoogle Scholar
  16. 16.
    Yarmonenko, S.P. and Vainson, A.A., Radiobiologiya cheloveka i zhivotnykh (Human and Animal Radiobiology), Moscow: Vysshaya Shkola, 2004.Google Scholar
  17. 17.
    Duesberg, P., Rausch, C., Rasnick, D., and Hehlmann, R., Genetic Instability of Cancer Cells Is Proportional to Their Degree of Aneuploidy, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, no. 23, pp. 13692–13697.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • B. F. Chadov
    • 1
  • E. V. Chadova
    • 1
  • E. A. Khotskina
    • 1
  • N. B. Federova
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations