Russian Journal of Genetics

, Volume 45, Issue 1, pp 81–84 | Cite as

Specific features in using SNP markers developed for allopolyploid wheat

Plant Genetics


In this work, we analyzed 54 domestic cultivars of hexaploid (common) wheat Triticum aestivum L. (AABBDD genome) and accessions of tetraploid wheats of the Timopheevi group (AAGG) and rye Secale cereale (RR) using 21 SNP markers for common wheat. It was demonstrated that application of the SNP markers developed and verified for particular common wheat cultivars in allele-specific PCR analysis of other cultivars with different geographic origins could lead to an incorrect estimation of the similarity between the genotypes tested. The studied SNP markers of common wheat are inappropriate for analyzing genomes of other cereal species, in particular, T. timopheevii wheats and rye S. cereale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vignal, A. Milan, D., SanCristobal M., and Eggen, A., A Review on SNP and Other Types of Molecular Markers and Their Use in Animal Genetics, Genet. Sel. Evol., 2002, vol. 34, pp. 275–305.PubMedCrossRefGoogle Scholar
  2. 2.
    Brookes, A., The Essence of SNPs, Gene, 1999, vol. 234, pp. 177–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta, P.K., Varshney, R.K., Sharma, P.C., and Ramesh, B., Molecular Markers and Their Applications in Wheat Breeding, Plant Breed., 1999, vol. 118, pp. 369–390.CrossRefGoogle Scholar
  4. 4.
    Khlestkina, E.K. and Salina, E.A., SNP Markers: Methods of Analysis, Ways of Development, and Comparison on an Example of Common Wheat, Russ. J. Genet., 2006, vol. 42, no. 6, pp. 725–736.CrossRefGoogle Scholar
  5. 5.
    Somers, D.J., Kirkpatrick, R., Moniwa, M., and Walsh, A., Mining Single-Nucleotide Polymorphisms from Hexaploid Wheat ESTs, Genome, 2003, vol. 49, pp. 431–437.CrossRefGoogle Scholar
  6. 6.
    Dvorak, J. and Akhunov, E.D., Tempos of Gene Locus Deletions and Duplications and Their Relationship to Recombination Rate during Diploid and Polyploid Evolution in the Aegilops-Triticum Alliance, Genet., 2005, vol. 171, pp. 323–332.CrossRefGoogle Scholar
  7. 7.
    Boisson, M., Mondon, K., Torney, V., et al., Partial Sequences of Nitrogen Metabolism Genes in Hexaploid Wheat, Theor. Appl. Genet., 2005, vol. 110, pp. 932–940.PubMedCrossRefGoogle Scholar
  8. 8.
    Huang, X.Q., Börner, A., Röder, M.S., and Ganal, M.W., Assessing Genetic Diversity of Wheat (Triticum aestivum L.) Germplasm Using Microsatellite Markers, Theor. Appl. Genet., 2002, vol. 105, pp. 699–707.PubMedCrossRefGoogle Scholar
  9. 9.
    Roussel, V., Koenig, J., Beckert, M., and Balfourier, F., Molecular Diversity in French Bread Wheat Accessions Related to Temporal Trends and Breeding Programmes, Theor. Appl. Genet., 2004, vol. 108, pp. 920–930.PubMedCrossRefGoogle Scholar
  10. 10.
    Landjeva, S., Korzun, V., and Ganeva, G., Evaluation of Genetic Diversity among Bulgarian Winter Wheat (Triticum aestivum L.) Varieties during the Period 1925–2003 Using Microsatellites, Gen. Res. Crop Evol., 2006, vol. 53, pp. 1605–1614.CrossRefGoogle Scholar
  11. 11.
    Khlestkina, E.K., Huang, X., Quenun, S.Y.B., et al., Genetic Diversity in Cultivated Plants—Loss or Stability, Theor. Appl. Genet., 2004, vol. 108, pp. 1466–1472.PubMedCrossRefGoogle Scholar
  12. 12.
    Röder, M.S., Wendehake, K., Korzun, V., et al., Construction and Analysis of a Microsatellite-Based Database for European Wheat Cultivars, Theor. Appl. Genet., 2002, vol. 106, pp. 67–73.PubMedGoogle Scholar
  13. 13.
    Khlestkina, E.K., Roder, M.S., Efremova, T.T., et al., The Genetic Diversity of Old and Modern Siberian Varieties of Common Spring Wheat Determined by Microsatellite Markers, Plant Breed., 2004, vol. 123, pp. 122–127.CrossRefGoogle Scholar
  14. 14.
    Khlestkina, E.K., Myint Than, M.H., Pestsova, E.G., et al., Mapping of 99 New Microsatellite-Derived Loci in Rye (Secale cereale L.) Including 39 Expressed Sequencing Tags, Theor. Appl. Genet., 2004, vol. 109, pp. 725–732.PubMedCrossRefGoogle Scholar
  15. 15.
    Salina, E.A., Leonova, I.N., Efremova, T.T., and Roder, M.S., Wheat Genome Structure: Translocations during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Sears, E.R., Nullisomic Analysis in Common Wheat, Am. Nat., 1953, vol. 87, pp. 245–252.CrossRefGoogle Scholar
  17. 17.
    Zhang, W., Gianibelli, M.C., Ma, W., et al., Identification of SNPs and Development of Allele-Specific PCR Markers for Gamma-Gliadin Alleles in Triticum aestivum, Theor. Appl. Genet., 2003, vol. 107, pp. 130–138.PubMedCrossRefGoogle Scholar
  18. 18.
    Varshney, R.K., Beier, U., Khlestkina, E.K., et al., Single Nucleotide Polymorphisms in Rye (Secale cereale L.): Discovery, Frequency, and Applications for Genome Mapping and Diversity Studies, Theor. Appl. Genet., 2007, vol. 114, pp. 1105–1116.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2009

Authors and Affiliations

  • S. A. Kozlova
    • 1
  • E. K. Khlestkina
    • 1
  • E. A. Salina
    • 1
  1. 1.Institute of Cytology and GeneticsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations