Russian Journal of Genetics

, 44:1431 | Cite as

Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines

  • I. N. Leonova
  • M. S. Röder
  • N. P. Kalinina
  • E. B. Budashkina
Plant Genetics

Abstract

Introgressive lines resulting from crossing common wheat Triticum aestivum with the tetraploid T. timopheevii are characterized by effective resistance to leaf rust caused by Puccinia triticina Eriks. Molecular analysis using 350 specific simple sequence repeat (SSR) markers determined localization of the T. timopheevii genome in chromosomes 1A, 2A, 2B, 5A, 5B, and 6B. A population of F2 offspring of crossing hybrid line 842-2 with common wheat cultivar Skala was obtained for mapping the loci controlling leaf rust resistance. Analysis of association of phenotypic and genotypic data by means of simple interval mapping (SIM) and composite interval mapping (CIM) has shown that the resistance of adult plants is determined by two loci in chromosomes 5B and 2A. The major locus QLr.icg-5B, transferred from T. timopheevii chromosome 5G mapped to the interval of microsatellite loci Xgwm408-Xgwm1257 controls 72% of the phenotypic variance of the trait. The other, minor locus QLr.icg-2A located to chromosome 2A at a distance of 10 cM from Xgwm312 accounts for 7% of the trait expression. Microsatellite markers located near these loci may be used for controlling the transfer of agronomically valuable loci when new lines and cultivars are created.

References

  1. 1.
    McIntosh, R.A., Devos, K.M., Dubcovsky, J., et al., Catalogue of Gene Symbols for Wheat: Supplement, Annu. Wheat Newslett., 2005, vol. 51, pp. 251–285.Google Scholar
  2. 2.
    Ustoichivost’ pshenitsy k buroi rzhavchine (Wheat Resistance to Leaf Rust), Khvostova, V.V., Ed., Novosibirsk: Nauka, 1978.Google Scholar
  3. 3.
    Budashkina, E., Cytogenetic Study of Introgressive Disease-Resistant Common Wheat Lines, Tag. Ber. Acad. Landwirtsch. Wiss. DDR, 1988, vol. 206, pp. 209–212.Google Scholar
  4. 4.
    Budashkina, E.B. and Kalinina, N.P., Development and Genetic Analysis of Common Wheat Introgressive Lines Resistant to Leaf Rust, Acta Phytopathol. Entomol. Hungarica, 2001, vol. 36, pp. 61–65.CrossRefGoogle Scholar
  5. 5.
    Mains, E.B. and Jackson, H.S., Physiological Specialization in the Leaf Rust of Wheat, Puccinia triticina Erikss, Phytopathology, 1926, vol. 16, pp. 89–120.Google Scholar
  6. 6.
    Plaschke, J., Ganal, M.W., and Röder, M.S., Detection of Genetic Diversity in Closely Related Bread Wheat Using Microsatellite Markers, Theor. Appl. Genet., 1995, vol. 91, pp. 1001–1007.CrossRefGoogle Scholar
  7. 7.
    Röder, M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007–2023.PubMedGoogle Scholar
  8. 8.
    Pestsova, E., Ganal, M.W., and Röder, M.S., Isolation and Mapping of Microsatellite Markers Specific for the D Genome of Bread Wheat, Genome, 2000, vol. 43, pp. 689–697.CrossRefPubMedGoogle Scholar
  9. 9.
    Lander, E.S., Green, P., Abrahamson, J., et al., MAPMAKER: An Interactive Computer Package for Constructing Primary Genetic Linkage Maps of Experimental and Natural Populations, Genomics, 1987, vol. 1, pp. 174–181.CrossRefPubMedGoogle Scholar
  10. 10.
    Kosambi, D.D., The Estimation of Map Distances from Recombination Values, Ann. Eugen., 1944, vol. 12, pp. 172–175.Google Scholar
  11. 11.
    Manly, K.F., Cudmore, R.H., and Meer, J.M., Map Manager QTX, Cross-Platform Software for Genetic Mapping, Mammalian Genome, 2001, vol. 12, pp. 930–932.CrossRefPubMedGoogle Scholar
  12. 12.
    Khristov, Yu.A. and Bakhareva, Zh.A., Genetic Immunological Defense of Crops against Diseases under the Conditions of Western Siberia, in Selektsiya sel’skokhozyaistvennykh kul’tur na immunitet (Breeding of Crops for Immunity) (Proc. Method. Conference), Novosibirsk, 2004, pp. 19–26.Google Scholar
  13. 13.
    Salina, E.A., Leonova, I.N., Efremova, T.T., and Roder, M.S., Wheat Genome Structure: Translocation during the Course of Polyploidization, Funct. Integr. Genomics, 2006, vol. 6, pp. 71–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Prasad, M., Varshney, R.K., Roy, J.K., et al., The Use of Microsatellites for Detecting DNA Polymorphism, Genotype Identification and Genetic Diversity in Wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 584–592.Google Scholar
  15. 15.
    Leonova, I.N., Röder, M.S., Budashkina, E.B., et al., Molecular Analysis of Leaf-Rust-Resistance Introgression Lines Obtained by Crossing of Hexarloid Wheat Triticum aestivum with Tetraploid Wheat Triticum timopheevii, Russ. J. Genet., 2002, vol. 38, no. 12, pp. 1397–1403.CrossRefGoogle Scholar
  16. 16.
    Bildanova, L.L., Badaeva, E.D., Pershina, L.A., and Salina, E.A., Molecular Study and S-Banding of Chromosomes in Common Wheat Alloplasmic Lines Obtained from the Backcross Progeny of Barley-Wheat Hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and Differing in Fertility, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1383–1391.CrossRefGoogle Scholar
  17. 17.
    Huang, X.Q., Kempf, H., Ganal, M.W., and Röder, M.S., Advanced Backcross QTL Analysis in Progenies Derived from a Cross between a German Elite Winter Wheat Variety and a Synthetic Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2004, vol. 109, pp. 933–943.CrossRefPubMedGoogle Scholar
  18. 18.
    Peng, J., Korol, A.B., Fahima, T., et al., Molecular Genetic Maps in Wild Emmer Wheat, Triricum dicoccoides: Genome-Wide Coverage, Massive Negative Interference, and Putative Quasi-Linkage, Genome Res., 2000, vol. 10, pp. 1509–1531.CrossRefPubMedGoogle Scholar
  19. 19.
    Huang, X.Q., Coster H., Ganal M.W., Röder M.S. Advanced Backcross QTL Analysis for the Identification of Quantitative Trait Loci Alleles from Wild Relatives of Wheat (Triticum aestivum L.), Theor. Appl. Genet., 2003, vol. 106, pp. 1379–1389.PubMedGoogle Scholar
  20. 20.
    Jakobson, I., Peusha, H., Timopheeva, L., and Jarve, K., Adult Plant and Seedling Resistance to Powdery Mildew in a Triticum aestivum × Triticum militinae Hybrid Lines, Theor. Appl. Genet., 2006, vol. 112, pp. 760–769.CrossRefPubMedGoogle Scholar
  21. 21.
    Somers, D.J., Isaac, P., and Keith, E., A High-Density Microsatellite Consensus Map for Bred Wheat (Triticum aestivum), Theor. Appl. Genet., 2004, vol. 109, pp. 1105–1114.CrossRefPubMedGoogle Scholar
  22. 22.
    Järve, K., Peusha, H.O., Tsymbalova, J., et al., Chromosomal Location of a Triticum timopheevii-Derived Powdery Mildew Resistance Gene Transferred to Common Wheat, Genome, 2000, vol. 43, pp. 377–381.CrossRefPubMedGoogle Scholar
  23. 23.
    Lu, H., Romero-Severson, J., and Bernardo, R., Chromosomal Regions Associated with Segregation Distortion in Maize, Theor. Appl. Genet., 2002, vol. 105, pp. 622–628.CrossRefPubMedGoogle Scholar
  24. 24.
    Badaeva, E.D., Prokofieva, Z.D., Bilinskaya, E.N., et al., Cytogenetic Analysis of Hybrids Resistant to Yellow Rust and Powdery Mildew Obtained by Crossing Common Wheat (Triticum aestivum L., AABBDD) with Wheats of the Timopheevi Group (AtAtGG), Russ. J. Genet., vol. 2000, vol. 36, no. 12, pp. 1401–1410.CrossRefGoogle Scholar
  25. 25.
    Leonova, I.N., Laikova, L.I., Popova, O.M., et al., Detection of Quantitative Trait Loci for Leaf Rust Resistance in Wheat — T. timopheevii/T. tauschii Introgression Lines, Euphytica, 2007, vol. 155, pp. 79–86.CrossRefGoogle Scholar
  26. 26.
    Brown-Guedira, G.L., Singh, S., and Fritz, A.K., Performance and Mapping of Leaf Rust Resistance Transferred to Wheat from Triticum timopheevii subsp. armeniacum, Phytopathology, 2003, vol. 93, pp. 784–789.CrossRefPubMedGoogle Scholar
  27. 27.
    Badaeva, E.D., Budashkina, E.B., Badaev, N.S., et al., General Features of Chromosome Substitutions in Triticum aestivum × T. timopheevii Hybrids, Theor. Appl. Genet., 1991, vol. 82, pp. 227–232.CrossRefGoogle Scholar
  28. 28.
    Nelson, J.C., Singh, R.P., Autrique, J.E., and Sorrels, M.E., Mapping Genes Conferring and Suppressing Leaf Rust Resistance in Wheat, Crop Sci., 1997, vol. 37, pp. 1928–1935.Google Scholar
  29. 29.
    Ren, S.X., McIntosh, R.A., Sharp, P.J., and The, T.T., A Storage Protein Marker Associated with the Suppressor of Pm8 for Powdery Mildew Resistance in Wheat, Theor. Appl. Genet., 1996, vol. 93, pp. 1054–1060.CrossRefGoogle Scholar
  30. 30.
    Ren, S.X., McInntosh, R.A., and Lu, Z.J., Genetic Suppression of the Cereal Rye-Derived Gene Pm8 in Wheat, Euphytica, 1997, vol. 93, pp. 353–360.CrossRefGoogle Scholar
  31. 31.
    Pukhal’skii, V.A., Problems of Genetic Theory of Plant Breeding, Vestn. Vseross. O-va Genet. Selekts., 2005, vol. 9, pp. 306–316.Google Scholar
  32. 32.
    McIntosh, R.A., Yamazaki, Y., Devos, K.M., et al., Catalogue of Gene Symbols, KOMUGI Integrated Wheat Science Database, 2003, http://www.grs.nig.ac.jp/wheat/komugi/genes
  33. 33.
    Leonova, I., Borner, A., Budashkina, E., et al., Identification of Microsatellite Markers for a Leaf Rust Resistance Gene Introgressed into Common Wheat from Triticum timopheevii, Plant Breed., 2004, vol. 123, pp. 93–95.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. N. Leonova
    • 1
  • M. S. Röder
    • 2
  • N. P. Kalinina
    • 1
  • E. B. Budashkina
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany

Personalised recommendations