Russian Journal of Genetics

, 44:1424 | Cite as

Comparative genome analysis in pea Pisum sativum L. Varieties and Lines with chromosomal and molecular markers

  • T. E. Samatadze
  • D. A. Zelenina
  • N. G. Shostak
  • A. A. Volkov
  • K. V. Popov
  • O. V. Rachinskaya
  • A. Yu. Borisov
  • I. A. Tihonovich
  • A. V. Zelenin
  • O. V. Muravenko
Plant Genetics


C banding, Ag-NOR staining, FISH with pTa71 (45S rDNA) and pTa794 (5S rDNA), and RAPD-PCR analysis were used to study the genome and chromosome polymorphism in four varieties (Frisson, Sparkle, Rondo, and Finale) and two genetic lines (Sprint-2 and SGE) of pea Pisum sativum L. A comparison of the C-banding patterns did not reveal any polymorphism within the varieties. The most significant between-variety differences were observed for the size of C bands on satellite chromosomes 4 and 7. All grain pea varieties (Frisson, Sparkle, and Rondo) had a large C band in the satellite of chromosome 4 and a medium C band in the region adjacent to the satellite thread on chromosome 7. C bands were almost of the same size in the genetic lines and vegetable variety Finale. In all accessions, 45S rDNA mapped to the secondary constriction regions of chromosomes 1, 3, and 5. The signal from chromosome 5 in the lines was more intense than in the varieties. Ag-NOR staining showed that the transcriptional activity of the 45S rRNA genes on chromosome 7 was higher than on chromosome 4 in all accessions. No more than four Ag-NOR-positive nucleoli were observed in interphase nuclei. Statistical analysis of the total area of Ag-NOR-stained nucleoli did not detect any significant difference between the accessions examined. RAPD-PCR analysis revealed high between-variety and low within-variety genomic polymorphism. Chromosomal and molecular markers proved to be promising for genome identification in pea varieties and lines.


Arbuscular Mycorrhizal Fungus Pisum Sativum Comparative Genome Analysis Satellite Chromosome Matricaria Chamomilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borisov, A.Yu., Provorov, N.A., Tikhonovich, I.A., and Tsyganov, V.E., Genetic Control of the Interaction between Legumes and Nodule Bacteria, Genetika simbioticheskoi azotfiksatsii s osnovami selektsii (Genetics of Symbiotic Nitrogen Fixation and the Principles of Breeding), Tikhonovich, I. and Provorov, N.A., Eds., St. Petersburg: Nauka, 1998.Google Scholar
  2. 2.
    Shtark, O.Yu., Danilova, T.N., and Naumkina, T.S., Analysis of Pea (Pisum sativum L.) Initial Material for Selection of Varieties with a High Symbiotic Potential and the Choice of Parameters for Its Evaluation, Ekolog. Genet., 2006, vol. 4, no. 2, pp. 22–28.Google Scholar
  3. 3.
    Greilhuber, J. and Ebert, I., Genome Size Variation in Pisum sativum, Genome, 1994, vol. 37, no. 4, pp. 646–655.CrossRefPubMedGoogle Scholar
  4. 4.
    Lamprecht, H., The Variation of Linkage and the Course of Crossingover, Agric. Hort. Genet., 1948, vol. 6, pp. 10–49.Google Scholar
  5. 5.
    Blixt, S., Cytology of Pisum: II. The Normal Karyotype, Agric. Hort. Genet., 1958, vol. 16, pp. 221–237.Google Scholar
  6. 6.
    Blixt, S., Cytology of Pisum: III. Investigation of Five Interchangel Lines and Coordination of Linkage Groups with Chromosomes, Agric. Hort. Genet., 1959, vol. 17, pp. 47–75.Google Scholar
  7. 7.
    Folkeson, D., Assignment of Linkage Segments to the Satellite Chromosomes 4 and 7 in Pisum sativum, Hereditas, 1990, vol. 112, pp. 257–263.CrossRefGoogle Scholar
  8. 8.
    Folkeson, D., Assignment of Linkage Segments to Chromosomes 3 and 5 in Pisum sativum, Hereditas, 1990, vol. 112, pp. 249–256.CrossRefGoogle Scholar
  9. 9.
    Hall, K.J., Parker, J.D., and Ellis, T.H.N., The Relationship between Genetic and Cytogenetic Maps of Pea: I. Standard and Translocation Karyotypes, Genome, 1997, vol. 40, pp. 744–754.CrossRefPubMedGoogle Scholar
  10. 10.
    Hall, K.J., Parker, J.S., Ellis, T.H.N., et al., The Relationship between Genetic and Cytogenetic Maps of Pea: II. Physical Maps of Linkage Mapping Populations, Genome, 1997, vol. 40, pp. 755–769.CrossRefPubMedGoogle Scholar
  11. 11.
    Rawlins, D.J., Highert, M.I., and Shaw, P.J., Localization of Telomeres in Plant Interphase Nuclei by in situ Hybridization and 3D Confocal Microscopy, Chromosoma, 1991, vol. 100, pp. 424–431.CrossRefGoogle Scholar
  12. 12.
    Marchenko, A.N. and Gostimskii, S.A., Identification of a New Translocation in Pea, Dokl. Akad. Nauk SSSR, 1997, vol. 357, pp. 713–716.Google Scholar
  13. 13.
    Neumann, P., Nouzova, M., and Macas, J., Molecular and Cytogenetic Analysis of Repetitive DNA in Pea (Pisum sativum L.), Genome, 2001, vol. 44, pp. 716–728.CrossRefPubMedGoogle Scholar
  14. 14.
    Neumann, P., Pozarkova, D., Vrana, J., et al., Chromosome Sorting and PCR-Based Physical Mapping in Pea (Pisum sativum L.), Chromosome Res., 2002, vol. 10, pp. 63–71.CrossRefPubMedGoogle Scholar
  15. 15.
    Samatadze, T.E., Muravenko, O.V., Zelenin, A.V., and Gostimskii, S.A., Identification of Pea (Pisum sativum L.) Chromosomes Using C-Banding Analysis, Dokl. Akad. Nauk, 2002, vol. 387, no. 5, pp. 714–717.Google Scholar
  16. 16.
    Samatadze, T.E., Muravenko, O.V., Bolsheva, N.L., et al., Investigation of Chromosomes in Varieties and Translocation Lines of Pea Pisum sativum L. by FISH, Ag-NOR, and Differential DARI Staining, Russ. J. Genet., 2005, vol. 41, no. 12, pp. 1381–1388.CrossRefGoogle Scholar
  17. 17.
    Lu, J., Knox, M.R., Ambrose, M.J., et al., Comparative Analysis of Genetic Diversity in Pea Assessed by RFLPand PCR-Based Methods, Theor. Appl. Genet., 1996, vol. 93, pp. 1103–1111.CrossRefGoogle Scholar
  18. 18.
    Laucou, V., Haurogne, K., Ellis, N., and Rameau, C., Genetic Mapping in Pea: 1. RAPD-Based Genetic Linkage Map of Pisum sativum, Theor. Appl. Genet., 1998, vol. 97, pp. 905–915.CrossRefGoogle Scholar
  19. 19.
    Rameau, C., Denoue, D., Fraval, F., et al., Genetic Mapping in Pea: 2. Identification of RAPD and SCAR Markers Linked to Genes Affecting Plant Architecture, Theor. Appl. Genet., 1998, vol. 97, pp. 916–928.CrossRefGoogle Scholar
  20. 20.
    von Stackelberg, M., Linemann, S., Menke, M., et al., Identification of AFLP and STS Markers Closely Linked to the def Locus in Pea, Theor. Appl. Genet., 2003, vol. 106, pp. 1293–1299.Google Scholar
  21. 21.
    Janilla, P. and Sharma, B., RAPD and SCAR Markers for Powdery Mildew Resistance Gene er in Pea, Plant Breed., 2004, vol. 123, no. 3, pp. 271–274.CrossRefGoogle Scholar
  22. 22.
    Loridon, K., McPhee, K., Morin, J., et al., Microsatellite Marker Polymorphism and Mapping in Pea (Pisum sativum L.), Theor. Appl. Genet., 2005, vol. 111, pp. 1022–1031.CrossRefPubMedGoogle Scholar
  23. 23.
    Gostimskii, S.A., Kokaeva, Z.G., and Konovalov, F.A., Studying Plant Genome Variation Using Molecular Markers, Russ. J. Genet., 2005, vol. 41, no. 4, pp. 378–388.CrossRefGoogle Scholar
  24. 24.
    Duc, G. and Messager, A., Mutagenesis of Pea (Pisum sativum L.) and the Isolation of Mutants for Nodulation and Nitrogen Fixation, Plant Sci., 1989, vol. 60, pp. 207–213.CrossRefGoogle Scholar
  25. 25.
    Kneen, B.E. and LaRue, T.A., Nodulation Resistant Mutant of Pisum sativum L., J. Heredity, 1984, vol. 75, pp. 238–240.Google Scholar
  26. 26.
    Feenstra, W.J. and Jacobsen, E., Isolation of a Nitrate Reductase Deficient Mutant of Pisum sativum by Means of Selection for Chlorate Resistance, Theor. Appl. Genet., 1980, vol. 58, pp. 39–42.CrossRefGoogle Scholar
  27. 27.
    Engvild, K.J., Nodulation and Nitrogen Fixation Mutants of Pea (Pisum sativum), Theor. Appl. Genet., 1987, vol. 74, pp. 711–713.CrossRefGoogle Scholar
  28. 28.
    Kosterin, O.E. and Rozov, S.M., Mapping of the New Mutation blb and the Problem of Integrity of Linkage Group I, Pisum Genet., 1993, vol. 25, pp. 27–31.Google Scholar
  29. 29.
    Berdnikov, V.A., Rozov, S.M., and Bogdanova, V.S., Production of Pea Laboratory Line Series, in Chastnaya genetika rastenii (Specific Plant Genetics), Proc. Conf., Kievx, 1989, vol. 2, pp. 47–51.Google Scholar
  30. 30.
    Zelenina, D.A., Khrustaleva, A.M., and Volkov, A.A., Comparative Study of the Population Structure and Population Assignment of Sockeye Salmon Oncorhynchus nerka from West Kamshatka Based on RAPD-PCR and Microsatellite Polymorphism, Russ. J. Genet., 2006, vol. 42, no. 5, pp. 563–572.CrossRefGoogle Scholar
  31. 31.
    Muravenko, O.V., Yurkevich, O.Yu., Bolsheva, N.L., et al., Comparison of Genomes of Eight Species of Sections Linum and Adenolinum from the Genus Linum Based on Chromosome Banding, Molecular Markers, and RAPD Analysis, Russ. J. Genet., 2008, (in press).Google Scholar
  32. 32.
    Fuchs, J., Kuhne, M., and Schubert, I., Assignment of Linkage Groups to Pea Chromosomes after Karyotyping and Gene Mapping by Fluorescent in situ Hybridization, Chromosoma, 1998, vol. 107, pp. 272–276.CrossRefPubMedGoogle Scholar
  33. 33.
    Muravenko, O.V., Samatadze, T.E., Popov, K.V., et al., Polymorphism of Heterochromatic Regions of Flax Chromosomes, Biol. Membr., 1998, vol. 15, no. 6, pp. 670–678.Google Scholar
  34. 34.
    Muravenko, O.V., Amosova, A.V, Samatadze, T.E., et al., Chromosome Localization 5S and 45S Ribosomal DNA in the Genomes of Linum L. Species of the Section Linum (syn. Protolinum and Adenolinum), Russ. J. Genet., 2004, vol. 40, no. 2, pp. 193–196.CrossRefGoogle Scholar
  35. 35.
    Samatadze, T.E., Muravenko, O.V., Klimakhin, G.I., and Zelenin, A.V., Intraspecific Chromosome Polymorphism in Matricaria chamomilla L. (syn. M. recutita L.) Studied by C-Banding Techniques, Russ. J. Genet., 1997, vol. 33, no. 1, pp. 111–113.Google Scholar
  36. 36.
    Samatadze, T.E., Muravenko, O.V., and Zelenin, A.V., Comparison of C-Banded Chromosomes in Karyotypes of Three Species of the Genus Matricaria L., Russ. J. Genet., 1998, vol. 34, no. 12, pp. 1469–1473.Google Scholar
  37. 37.
    Samatadze, T.E., Muravenko, O.V., Popov, K.V., and Zelenin, A.V., Genome Comparison of the Matricaria chamomilla L. Varieties by the Chromosome C- and ORBanding Patterns, Caryologia, 2001, vol. 54, no. 4, pp. 299–306.Google Scholar
  38. 38.
    Manoj, K., Friebe, B., Koul, A.K., and Gill, B.S., Origin of an Apparent B Chromosome by Mutation, Chromosome Fragmentation and Specific DNA Sequence Amplification, Chromosoma, 2002, vol. 111, pp. 332–340.CrossRefGoogle Scholar
  39. 39.
    Cullis, C.A., Mechanisms and Control of Rapid Genomic Changes in Flax, Ann. Botany, 2005, vol. 95, pp. 201–206.CrossRefGoogle Scholar
  40. 40.
    Miller, D.A., Dev, V.G., Tantravahi, R., and Miller, O.J., Suppression of Human Nucleolus Organizer Activity in Mouse-Human Somatic Hybrid Cell, Exp. Cell Res., 1976, vol. 101, pp. 235–243.CrossRefPubMedGoogle Scholar
  41. 41.
    Miller, D.A., Tantravahi, R., Dev, V.G., et al., Frequency of Satellite Association of Human Chromosomes Is Correlated with Amount of Ag-Staining of the Nucleolus Organizer Region, Am. J. Hum. Genet., 1977, vol. 29, pp. 390–502.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • T. E. Samatadze
    • 1
  • D. A. Zelenina
    • 3
  • N. G. Shostak
    • 1
  • A. A. Volkov
    • 3
  • K. V. Popov
    • 1
  • O. V. Rachinskaya
    • 1
  • A. Yu. Borisov
    • 2
  • I. A. Tihonovich
    • 2
  • A. V. Zelenin
    • 1
  • O. V. Muravenko
    • 1
  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  2. 2.All-Russia Institute of Agricultural MicrobiologySt. PetersburgRussia
  3. 3.All-Russia Institute of Fishery and OceanographyMoscowRussia

Personalised recommendations