Russian Journal of Genetics

, Volume 44, Issue 7, pp 841–848 | Cite as

Differentiation of chum salmon Oncorhynchus keta Wallbaum populations as revealed with microsatellite and allozyme markers: A comparative study

  • G. A. Rubtsova
  • K. I. Afanasiev
  • T. V. Malinina
  • M. V. Shitova
  • T. A. Rakitskaya
  • V. D. Prokhorovskaya
  • L. A. Zhivotovsky
Experimental Articles


The features and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup Islands were studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.


Chum Salmon Allozyme Locus Genetic Data Analysis Oncorhynchus Keta Allozyme Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salmenkova, E.A., Altukhov, Yu.P., Viktorovskii, R.M., et al., Genetic Structure of the Chum Salmon Populations Spawning in the Rivers of the Soviet Far East, Zh. Obshch. Biol., 1986, vol. 47, no. 4, pp. 529–548.Google Scholar
  2. 2.
    Salmenkova, E.A., Omelchenko, V.T., and Altukhov, Yu.P., Gene Geographic Investigation of Chum Salmon Oncorhynchus keta (Walbaum) Populations of the Asian Part of Species Area, Genetika (Moscow), 1992, vol. 28, no. 1, pp. 76–91.Google Scholar
  3. 3.
    Bachevskaya, L.T. and Pustovoit, S.P., Genetic Diversity of Chum Salmon (Oncorhynchus keta) Populations from the Rivers of the Northern Sea of Okhotsk: Changes under Conditions of Natural and Artificial Reproduction, Vopr. Ikhtiol., 1996, vol. 36, no. 5, pp. 660–666.Google Scholar
  4. 4.
    Schlötterer, C, Microsatellites, Molecular Genetic Analysis of Populations, Hoelzel, A.R., Ed., Oxford: Oxford Univ. Press, 1998, pp. 237–260.Google Scholar
  5. 5.
    Brown, B. and Epifanio, J., Nuclear DNA, Population Genetics: Principles and Applications for Fisheries Scientists, Hallerman, E.M., Ed., Bethesda: American Fish. Soc., 2003, pp. 101–126.Google Scholar
  6. 6.
    Zhivotovsky, L.A., Microsatellite Variation in Human Populations and Methods of Its Study, Inf. Vestn. VOGiS, 2006, vol. 10, no. 1, pp. 74–96.Google Scholar
  7. 7.
    Scribner, K.T., Crane, P.A., Spearman, W.J., and Seeb, L.W., DNA and Allozyme Markers Provide Concordant Estimates of Population Differentiation: Analyses of Yukon River Fall-Run Chum Salmon (Oncorhynchus keta), Can. J. Fish. Aquat. Sci., 1998, vol. 55, pp. 1748–1758.CrossRefGoogle Scholar
  8. 8.
    Chen, J.-P., Sun, D.-J., Dong, Ch.-Zh., et al., Genetic Analysis of Four Wild Chum Salmon (Oncorhynchus keta) Populations in China Based on Microsatellite Markers, Environ. Biol. Fishes, 2005, vol. 73, pp. 181–188.CrossRefGoogle Scholar
  9. 9.
    Yoon, M.S., Sato, J.E., Seeb, R.L., et al., Genetic Variation among Chum Salmon Population in the Pacific Rim Inferred from the Mitochondrial and Microsatellite DNA Analyses, NPAFC Doc., Minato: Graduate School of Fisheries Sciences, 2005.Google Scholar
  10. 10.
    Small, M.P., Frye, A.E., Von Bargen, J.F., and Young, S.F., Genetic Structure of Chum Salmon (Oncorhynchus keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?, Conservation Genet., 2006, vol. 7, pp. 65–78.CrossRefGoogle Scholar
  11. 11.
    Afanasiev, K.I., Rubtsova, G.A., Malinina, T.V., et al., Microsatellite Variability and Differentiation of Hatchery Stocks of Chum Salmon (Oncorhynchus keta Walbaum) in Sakhalin, Russ. J. Genet., 2006, vol. 42, no. 12, pp. 1431–1438.CrossRefGoogle Scholar
  12. 12.
    Afanasiev, K.I., Rubtsova, G.A., Shitova, M.V., et al., “Interregional Differentiation of Chum Salmon from Sakhalin and South Kurils Infered from Microsatellite Markers”, Russ. J. Genet., 2008, vol. 44, pp. 833–841.CrossRefGoogle Scholar
  13. 13.
    Salmenkova, E.A., Omel’chenko, V.T., Afanasiev, K.I., and Rubtsova, G.A., Genetic Diversity of Chum Salmon Oncorhynchus keta Walbaum (Salmonidae, Salmoniformes) and Population Gene Pool Dynamics upon Artificial Reproduction, Vopr. Ikhtiol., 2008, no. 3 (in press).Google Scholar
  14. 14.
    Weir, B.S., Genetic Data Analysis: Methods for Discrete Population Genetic Data, Sunderland: Sinauer, 1990.Google Scholar
  15. 15.
    Lewis, P.O. and Zaykin, D., Genetic Data Analysis: Computer Program for the Analysis of Allelic Data, 2001, http://lewis.eeb.uconn.lewishome.html.
  16. 16.
    SPSS for Windows: Release 11.5.0. Standard Version, SPSS Inc., 2002.Google Scholar
  17. 17.
    Zhivotovsky, L.A., Afanasiev, K.I., Rubtsova, G.I., et al., Creation of the DNA Data Base for Solving Reproduction, Identification, and Certification Problems in Pacific Salmon Population at the Example of Chum Salmon of the Iturup Island, Vopr. Rybolovstva, 2008, no. 1 (in press).Google Scholar
  18. 18.
    Altukhov, Yu.P., Salmenkova, E.A., Omelchenko, V.T., et al., Balancing Selection as a Possible Factor in the Maintenance of Uniform Allele Frequencies of Enzyme-Coding Loci in Populations of Pacific Pink Salmon Oncorhynchus gorbuscha (Walbaum), Genetika (Moscow), 1987, vol. 23, no. 10, pp. 1884–1896.Google Scholar
  19. 19.
    Zhivotovsky, L.A., Afanas’ev, K.I., and Rubtsova, G.A., Selection for Enzymatic Loci in Pink Salmon, Oncorhynchus gorbuscha (Walbaum), Genetika (Moscow), 1987, vol. 23, no. 10, pp. 1876–1883.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • G. A. Rubtsova
    • 1
  • K. I. Afanasiev
    • 1
  • T. V. Malinina
    • 1
  • M. V. Shitova
    • 1
  • T. A. Rakitskaya
    • 1
  • V. D. Prokhorovskaya
    • 1
  • L. A. Zhivotovsky
    • 1
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations