Russian Journal of Genetics

, Volume 44, Issue 6, pp 682–685 | Cite as

Polymorphism of the 12S rRNA gene and phylogeography of the Central Asian tortoises Agrionemys horsfieldii gray, 1844

  • V. A. VasilyevEmail author
  • D. A. Bondarenko
  • E. A. Peregontsev
  • A. S. Voronov
  • A. P. Ryskov
  • S. K. Semenova
General Genetics


Based on intraspecific polymorphism of 12S rRNA gene, genetic variation of isolated populations of the Central Asian tortoise, Agrionemys horsfieldii, was for the first time investigated on a large part of the species distribution range, encompassing Uzbekistan, southern Kazakhstan, and northern and eastern Iran. In 59 tortoises, four haplotypes were discovered, including two (AH1 and AH2), described earlier. Haplotype AH1 was detected in 52 tortoises, inhabiting southern Kazakhstan and Uzbekistan. Haplotype AH2 was found in four tortoises from the border territory between Uzbekistan, Tajikistan, and Afghanistan. Two novel haplotypes, AH3 and AH4, were detected in the three tortoises from Iran. Based on nucleotide substitutions in the 12S rDNA sequence, the possible divergence time between the tortoises from different parts of the range was estimated. Possible pathways of the formation of modern intraspecific groups of A. horsfieldii are discussed.


Carapace Length Border Territory Nominative Subspecies RAPD Variation Blood Sampling Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anan’eva, N.B., Borkin, L.Ya., Darevsky, I.S., and Orlov, N.L., Zemnovodnye i presmykayushchiesya. Entsiklopediya prirody Rossii (Amphibians and Reptiles: Encyclopedia of the Nature), Moscow: ABF, 1998.Google Scholar
  2. 2.
    Ernst C.H., and Barbour, R.W., Turtles of the World, Washington, DC: Smithsonian Inst. Press, 1989.Google Scholar
  3. 3.
    Crumly, C.R., A Nomanclatural History of Tortoises (Family Testudinidae), Smithsonian Herpetol. Inform. Serv., 1988, vol. 75, pp. 1–17.Google Scholar
  4. 4.
    Chkhikvadze, V.M., Systematic Position of Recent Terrestrial Tortoises of Central Asia and Kazakhstan, Izv. Akad. Nauk GSSR, Ser. Biol., 1988, vol. 14, no. 2, pp. 110–113.Google Scholar
  5. 5.
    Perälä, J., Biodiversity in Relatively Neglected Taxa of Testudo L., 1758, s.l. chelonii, Proc. Int. Congress on Testudo Genus,, 2001, vol. 3, pp. 40–52.Google Scholar
  6. 6.
    Alvarez, Y., Mateo, J., Andreu, A., et al., Mitochondrial DNA Haplotyping of Testudo graeca on Both Continental Sides of the Straits of Gibraltar, J. Hered., 2000, vol. 91, no. 1, pp. 39–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Van der Kuyl, A., Ballasina, D., Dekker, J., et al., Phylogenetic Relationships among the Species of Genus Testudo (Testudines: Testudinidae) Inferred from Mitochondrial 12S rRNA Gene Sequences, Mol. Phylogenet. Evol., 2002, vol. 22, no. 2, pp. 174–183.PubMedCrossRefGoogle Scholar
  8. 8.
    Van der Kuyl, A., Ballasina, D., and Zorgdrager, F., Mitochondrial Haplotype Diversity in the Tortoise Species Testudo graeca from North Africa and Middle East, BMC Evol. Biol., 2005, vol. 29, no. 5, pp. 1–8.Google Scholar
  9. 9.
    Honda, M., Yasukawa, Y., Hirayama, R., et al., Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora sensu lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences, Zool. Sci., 2002, vol. 19, no. 11, pp. 1305–1312.PubMedCrossRefGoogle Scholar
  10. 10.
    Avise, J.C., Phylogeography: The History and Formation of Species, Harvard: Harvard Univ. Press, 2000.Google Scholar
  11. 11.
    Semenova, S.K., Korsunenko, A.V., Vasilyev, V.A., et al., RAPD Variation in Mediterranean Turtle Testudo graeca L. (Testudinidae), Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1–9.Google Scholar
  12. 12.
    Methew, C.G.R., The Isolation of High Molecular Weight Eukaryotic DNA, Methods in Molecular Biology, Walker, J.M., Ed., New York: Humana Press, 1984, vol. 2, pp. 31–34.Google Scholar
  13. 13.
    Kocher, T.D., Thomas, W.K., Meyer, A., et al., Dynamics of Mitochondrial DNA Evolution in Animals: Amplifications and Sequencing with Conserved Primers, Proc. Natl Acad. Sci. USA, 1989, vol. 86, pp. 6196–6200.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar, S., Tamura, K., and Nei, M., MEGA3: Integrated Software for Molecular Evolutionary Genetics Analysis and Sequence Alignment, Briefings Bioinf., 2004, vol. 5, pp. 150–163.CrossRefGoogle Scholar
  15. 15.
    Kimura, M., A Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.PubMedCrossRefGoogle Scholar
  16. 16.
    Saitou, N. and Nei, M., The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.PubMedGoogle Scholar
  17. 17.
    Chkhikvadze, V.M., Amiranashvili, N.G., and Ataev, Ch., New Subspecies of Tortoise from North-West Turkmenistan, Izv. Akad. Nauk Turkmen SSR, Ser. Biol., 1990, no. 1, pp. 72–75.Google Scholar
  18. 18.
    Sharapov, Sh., Amiranashvili, N.G., and Chkhikvadze, V.M., Typical Tortoise — Agrionemus horsfieldi (Gray 1844) from the Late Paleolithic Site Ogzi-Kichik (Southern Tadzhikistan), Izv. Akad. Nauk Tadjik SSR, Ser. Biol., 1989, no. 1 (114), pp. 10–13.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • V. A. Vasilyev
    • 1
    Email author
  • D. A. Bondarenko
    • 2
  • E. A. Peregontsev
    • 3
  • A. S. Voronov
    • 1
  • A. P. Ryskov
    • 1
  • S. K. Semenova
    • 1
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Head Center of Hygiene and EpidemiologyFederal Medical and Biological AgencyMoscowRussia
  3. 3.Gosbiokontrol’State Committee of Nature ProtectionTashkentUzbekistan

Personalised recommendations