Russian Journal of Genetics

, Volume 43, Issue 9, pp 1014–1020 | Cite as

Characterization of new Caenorhabditis elegans strains with high and low thermotolerance

  • M. Kh. Gainutdinov
  • A. Kh. Timoshenko
  • T. M. Gainutdinov
  • T. B. Kalinnikova
Animal Genetics


The strains of Caenorhabditis elegans displaying low (LT) and high (HT1, HT2, and HT3) thermotolerance were obtained from the wild-type N2 strain by artificial selection for thermostability of locomotion and by natural selection in laboratory for thermotolerance of fertility under tolerable environmental temperature elevation. All these strains are new genetic variants that emerged during the experiment. The worms of strains HT2 and HT3 displayed an elevated upper temperature limit for reproduction (from 26 to 27.5°C), thermostability of locomotion at 36°C, and survival at 37°C as compared with the strain N2. The results have demonstrated that adaptation of C. elegans to high tmeperatures is an appropriate laboratory model for studying the mechanisms involved in the evolution of thermotolerance of poikilothermic Metazoa.


Paraquat Caenorhabditis Elegans Temperature Limit Reactive Oxygen Metabolite High Thermostability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pianka, E.R., Evolutionary Ecology, New York: Harper and Row, 1974.Google Scholar
  2. 2.
    Prosser, L., Temperature, Comparative Animal Physiology, L, 1973, vol. 2, pp. 84–209.Google Scholar
  3. 3.
    Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, Cambridge: Cambridge Univ. Press, 1975, vol. 1.Google Scholar
  4. 4.
    Hoffmann, A.A., Sørensen, J.G., and Loeschcke, V., Adaptation of Drosophila to Temperature Extremes: Bringing Together Quantitative and Molecular Approaches, J. Therm. Biol., 2003, vol. 28, pp. 175–216.CrossRefGoogle Scholar
  5. 5.
    Bargmann, C.I., Genetic and Cellular Analysis of Behavior in C. elegans, Annu. Rev. Neurosci., 1993, vol. 16, pp. 47–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Allion, M. and Thomas, J.H., Dauer Formation Induced by High Temperatures in Caenorhabditis elegans, Genetics, 2000, vol. 156, pp. 1047–1067.Google Scholar
  7. 7.
    Honda, Y. and Honda, S., Oxidative Stress and Life Span Determination in the Nematode Caenorhabditis elegans, Ann. N. Y. Acad. Sci., 2002, vol. 959, pp. 466–474.PubMedCrossRefGoogle Scholar
  8. 8.
    Muñoz, M.J., Longevity and Heat Stress Regulations in Caenorhabditis elegans, Mech. Ageing Dev., 2003, vol. 124, pp. 43–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Bargmann, C.I. and Kaplan, J.M., Signal Transduction in the Caenorhabditis elegans Nervous System, Annu. Rev. Neurosci., 1998, vol. 21, pp. 279–308.PubMedCrossRefGoogle Scholar
  10. 10.
    Kalinnikova, T.B., Timoshenko, A.Kh., Gainutdinov, T.M., et al., Adaptation of the Nematode Caenorhabditis elegans to Medium High Temperature, J. Evol. Biochem. Physiol., 2006, vol. 42, no. 5, pp. 475–482.CrossRefGoogle Scholar
  11. 11.
    Brenner, S., The Genetics of Caenorhabditis elegans, Genetics, 1974, vol. 77, pp. 71–94.PubMedGoogle Scholar
  12. 12.
    Plokhinskii, N.A., Algoritmy biometrii (Algorithms of Biometry), Moscow: Izd. Mosk. Univ., 1980.Google Scholar
  13. 13.
    Lithgow, G.J., White, T.M., Hinerfeld, D.A., and Johnson, T.E., Thermotolerance of a Long-Lived Mutant of Caenorhabditis elegans, J. Gerontol., 1994, vol. 49, pp. 13 270–13 276.Google Scholar
  14. 14.
    Andronikov, V.B., Gamete Thermoresistance and Temperature Conditions of Poikilotherm Animals Reproduction, Usp. Sovrem. Biol., 1999, vol. 119, no. 6, pp. 548–556.Google Scholar
  15. 15.
    Morley, J.F. and Morimoto, R.I., Regulation of Longevity in Caenorhabditis elegans by Heat Shock Factor and Molecular Chaperones, Mol. Biol. Cell, 2004, vol. 15, pp. 657–664.PubMedCrossRefGoogle Scholar
  16. 16.
    Fatt, H.V. and Dougherty, E.C., Genetic Control of Differential Heat Tolerance in Two Strains of the Nematode Caenorhabditis elegans, Science, 1963, vol. 141, pp. 260–267.CrossRefGoogle Scholar
  17. 17.
    Cossins, A.R., Temperature Adaptation of Biological Membranes, London: Portland Press, 1994.Google Scholar
  18. 18.
    Logue, J.A., De Vries, A.L., Fodor, E., and Cossins, A.R., Lipid Compositional Correlates of Temperature-Adaptive Interspecific Differences in Membrane Physical Structure, J. Exp. Biol., 2000, vol. 203, pp. 2105–2115.PubMedGoogle Scholar
  19. 19.
    Sørensen, J.G., Kristensen, T.N., and Loechcke, V., The Evolutionary and Ecological Role of Heat Shock Proteins, Ecol. Letts., 2003, vol. 6, pp. 1–13.CrossRefGoogle Scholar
  20. 20.
    Brun, J., L’adaptation aux temperatures elevees chez un nematode C. elegans Maupas 1900: I. L’adaptation son evolution, Annals Biol. Anim. Biochim. Biophys., 1966, vol. 6, pp. 127–158.Google Scholar
  21. 21.
    Grant, V., Organismic Evolution, San Francisco: Freeman, 1977.Google Scholar
  22. 22.
    Tikhomirova, M.M. and Belyatskaya, O.I., Modifying Effect of Extreme Temperature as a Function of the Organism Adaptation to This Factor on Radiation: Characteristics of Drosophila Stock Adapted to High Temperature, Genetika (Moscow), 1980, vol. 16, no. 1, pp. 115–122.Google Scholar
  23. 23.
    Imasheva, A.G., Environmental Stress and Genetic Variation in Animal Populations, Russ. J. Genet., 1999, vol. 35, no. 4, pp. 343–351.Google Scholar
  24. 24.
    Vasil’eva, L.A., Ratner, V.A., and Bubenshchikova, E.V., Stress Induction of Retrotransposon Transpositions in Drosophila: Reality of the Phenomenon, Characteristic Features, and Possible Role in Rapid Evolution, Russ. J. Genet., 1997, vol. 33, no. 8, pp. 918–927.Google Scholar
  25. 25.
    Parsons, P.A., Evolutionary Rates: Effects of Stress upon Recombination, Biol. J. Linn. Soc., 1988, vol. 35, pp. 49–68.Google Scholar
  26. 26.
    Hoffmann, A.A. and Parsons, P.A., Extreme Environmental Change and Evolution, Cambridge: Cambridge Univ. Press, 1997.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • M. Kh. Gainutdinov
    • 1
  • A. Kh. Timoshenko
    • 1
  • T. M. Gainutdinov
    • 1
  • T. B. Kalinnikova
    • 1
  1. 1.Institute of Ecology of Natural SystemsTatarstan Academy of SciencesKazanRussia

Personalised recommendations