Russian Journal of Genetics

, Volume 42, Issue 3, pp 219–233

Ancient DNA

  • G. N. Chelomina
Theoretical Papers and Reviews


The review is devoted to molecular genetic studies of ancient DNA. The problems of DNA preservation and modification after cell death, as well as techniques of working with ancient DNA, including its retrieval, removal of inhibitors, PCR amplification, and phylogenetic analysis, are discussed in detail. The possibilities are considered of using ancient DNA in resolving issues of systematics and evolution of various animal taxa, population genetics of humans and rare species, taxonomic identification and paleontological reconstructions, geographic origin of populations, microbiological analysis of paleontological and archeological finds, as well as some humanitarian aspects of its use.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Higuchi, R., Bowman, B., Freiberger, M., et al., DNA Sequences from the Quagga, an Extinct Member of the Horse Family, Nature, 1984, vol. 312, pp. 282–284.CrossRefPubMedGoogle Scholar
  2. 2.
    Higuchi, R., Wrischnik, L.A., Oakes, E., et al., Mitochondrial DNA of the Extinct Quagga: Relatedness and Extent of Postmortem Change, J. Mol. Evol., vol. 25, pp. 283–287.Google Scholar
  3. 3.
    Thomas, W.K., Paabo, S., Villablanca, F.X., and Wilson, A.C., Spatial and Temporal Continuity of Kangaroo Rat Populations Shown by Sequencing Mitochondrial DNA from Museum Specimens, J. Mol. Evol., 1990, vol. 31, pp. 101–112.CrossRefPubMedGoogle Scholar
  4. 4.
    Paabo, S., Molecular Cloning of Ancient Egyptian Mummy DNA, Nature, 1985, vol. 314, pp. 644–646.PubMedGoogle Scholar
  5. 5.
    Paabo, S., Preservation of DNA in Ancient Egyptian Mummies, J. Archeol. Sci., 1985, vol. 12, pp. 411–417.Google Scholar
  6. 6.
    Hagelberg, E., Sykes, B., and Hedges, R., Ancient Bone DNA Amplified, Nature, 1989, vol. 342, pp. 485–487.CrossRefPubMedGoogle Scholar
  7. 7.
    Lawlor, D.A., Dickel, C.D., Hauswirth, W.W., and Parham, P., Ancient HLA Genes from 7500-Year-Old Archeological Remains, Nature, 1991, vol. 349, pp. 785–787.CrossRefPubMedGoogle Scholar
  8. 8.
    Rollo, F., Characterization by Molecular Hybridization of RNA Fragments Isolated from Ancient (1400 B.C.) Seeds, Theor. Appl. Genet., 1985, vol. 71, pp. 330–333.Google Scholar
  9. 9.
    Golenberg, E.M., Giannasi, D.E., Clegg, M.T., et al., Chloroplast DNA Sequence from a Miocene Magnolia Species, Nature, 1990, vol. 344, pp. 656–658.CrossRefPubMedGoogle Scholar
  10. 10.
    Paabo, S. and Wilson, A.C., Mitochondrial DNA Sequences from a 7000-Year-Old Brain, Nucleic Acids Res., 1988, vol. 16, pp. 9774–9787.Google Scholar
  11. 11.
    Cano, R.J., Poinar, H.N., Pieniazek, N.J., et al., Amplification of DNA from 120–135-Million-Year-Old Weevil, Nature, 1993, vol. 363, pp. 536–538.CrossRefPubMedGoogle Scholar
  12. 12.
    Saiki, R.K., Scharf, S., Faloona, F., et al., Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia, Science, 1985, vol. 230, pp. 1350–1354.PubMedGoogle Scholar
  13. 13.
    Mullis, K.B. and Faloona, F.A., Specific Synthesis of DNA in Vitro Via a Polymerase-Catalyzed Chain Reaction, Methods Enzymol., 1987, vol. 155, pp. 335–350.PubMedGoogle Scholar
  14. 14.
    Cipollaro, M., Di Bernardo, G., Forte, A., et al., Histological Analysis and Ancient DNA Amplification of Human Bone Remains Found in Caius Lulius Polybius House in Pompeii, Croatian Med. J., 1999, vol. 40, pp. 392–397.Google Scholar
  15. 15.
    Vernesi, C., Caramelli, D., Carbonelli, S., et al., Application of DNA Sex Tests to Bone Specimens from Three Etruscan (VII–III Century B.C.) Archaeological Sites, Ancient Biomol., 1999, vol. 2, pp. 295–305.Google Scholar
  16. 16.
    Dudar, J.C., Waye, J.S., and Saunders, S.R., Determination of a Kinship System Using Ancient DNA, Mortuary Practice, and Historic Records in an Upper Canadian Pioneer Cemetery, Int. J. Osteoarcheol., 2003, vol. 13, pp. 232–246.Google Scholar
  17. 17.
    Marota, I. and Rollo, F., Molecular Paleontology, Cell. Mol. Life Sci., 2002, vol. 59, pp. 97–111.PubMedGoogle Scholar
  18. 18.
    Tani, N., Tsumura, Y., and Sato, H., Nuclear Gene Sequences and DNA Variation of Cryptomeria japonica Samples from the Postglacial Period, Mol. Ecol., 2003, vol. 12, pp. 859–868.CrossRefPubMedGoogle Scholar
  19. 19.
    Houde, P. and Braun, M.J., Museum Collections As a Source of DNA for Studies of Avian Phylogeny, Auk, 1988, vol. 105, pp. 773–776.Google Scholar
  20. 20.
    Paabo, S., Ancient DNA, Sci. Am., 1993, vol. 269, pp. 86–92.PubMedGoogle Scholar
  21. 21.
    Cooper, A., Studies of Avian Ancient DNA, Avian Molecular Evolution and Systematics, Mindell, D.P., Ed., San Diego: Academic, 1997, pp. 345–373.Google Scholar
  22. 22.
    Paabo, S. and Wilson, A.C., Miocene DNA Sequences—A Dream Come True?, Curr. Biol., 1991, vol. 1, pp. 45–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Woodward, S.R., Weyand, N.J., and Bunnell, M., DNA Sequence from Cretaceous Period Bone Fragments, Science, 1994, vol. 266, pp. 1229–1232.PubMedGoogle Scholar
  24. 24.
    Handt, O., Krings, M., Ward, R.H., and Paabo, S., The Retrieval of Ancient Human DNA Sequences, Am. J. Hum. Genet., 1996, vol. 59, pp. 368–376.PubMedGoogle Scholar
  25. 25.
    Hoss, M., Dilling, A., Currant, A., and Paabo, S., Molecular Phylogeny of the Extinct Ground Sloth Mylodon darwinii, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 181–186.CrossRefPubMedGoogle Scholar
  26. 26.
    Poinar, H.N., Hoss, M., Bada, J.L., and Paabo, S., Amino Acid Racemization and Preservation of Ancient DNA, Science, 1996, vol. 272, pp. 864–866.PubMedGoogle Scholar
  27. 27.
    Poinar, H.N. and Stankiewicz, B.A., Protein Preservation and DNA Retrieval from Ancient Tissues, Biochemistry, 1999, vol. 96, pp. 8426–8431.Google Scholar
  28. 28.
    Hoss, M., Paabo, S., and Vereschagin, N.K., Mammoth DNA Sequences, Nature, 1994, vol. 370, p. 333.CrossRefPubMedGoogle Scholar
  29. 29.
    Hagelberg, E., Thomas, M.G., Cook, C.E., et al., DNA from Ancient Mammoth Bones, Nature, 1994, vol. 370, pp. 333–334.CrossRefPubMedGoogle Scholar
  30. 30.
    Taylor, P.G., Reproducibility of Ancient DNA Sequences from Extinct Pleistocene Fauna, Mol. Biol. Evol., 1996, vol. 13, pp. 283–285.PubMedGoogle Scholar
  31. 31.
    Noro, M., Masuda, R., Dubrovo, I., et al., Molecular Phylogenetic Inference of the Woolly Mammoth Mammuthus primigenius Based on Complete Sequences of Mitochondrial Cytochrome B and 12S Ribosomal RNA Genes, J. Mol. Evol., 1998, vol. 46, pp. 314–326.CrossRefPubMedGoogle Scholar
  32. 32.
    Paabo, S., Of Bears, Conservation Genetics, and the Value of Time Travel, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1320–1321.CrossRefPubMedGoogle Scholar
  33. 33.
    Zischler, H., Hoss, M., Handt, O., et al., Detecting Dinosaur DNA, Science, 1995, vol. 268, pp. 1191–1193.Google Scholar
  34. 34.
    DeSalle, R., Barcia, M., and Wray, C., PCR Jumping in Clones of 30-Million-Year-Old DNA Fragments from Amber Preserved Termites (Mastotermes electrodominicus), Experientia, 1993, vol. 49, pp. 906–909.CrossRefPubMedGoogle Scholar
  35. 35.
    Cano, R.J., Poinar, H.N., Pieniazek, N.J., et al., Amplification and Sequencing of DNA from a 120–135 Million Year Old Weevil, Nature, 1993, vol. 363, pp. 536–538.CrossRefPubMedGoogle Scholar
  36. 36.
    Cano, R.J., Borucki, M.K., Higby-Schweitzer, M., et al., Bacillus DNA in Fossil Bees: An Ancient Symbiosis?, Appl. Environ. Microbiol., 1994, vol. 60, pp. 2164–2167.PubMedGoogle Scholar
  37. 37.
    Priest, F.G., Age of Bacteria from Amber, Science, 1995, vol. 270, pp. 2015–2017.PubMedGoogle Scholar
  38. 38.
    Bada, J.L., Wang, X.S., Poinar, H.N., et al., Amino Acid Racemization in Amber-Entombed Insects: Applications for DNA Preservation, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 3113–3135.CrossRefGoogle Scholar
  39. 39.
    Bada, J.L., Wang, X.S., and Hamilton, H., Preservation of Key Biomolecules in the Fossil Record: Current Knowledge and Future Challenges, Philos. Trans. Biol. Sci., 1999, vol. 354, pp. 77–86.Google Scholar
  40. 40.
    Paabo, S., Ancient DNA: Extraction, Characterization, Molecular Cloning, and Enzymatic Amplification, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 1939–1943.PubMedGoogle Scholar
  41. 41.
    Cooper, A., Moas, Gizzard Stones, and New Zealand Plants: Further Commentary, N. Z. Sci. Rev., 1994, vol. 51, pp. 60–63.Google Scholar
  42. 42.
    Hagelberg, E., Mitochondrial DNA from Ancient Bones, in Ancient DNA, New York, 1994, pp. 195–204.Google Scholar
  43. 43.
    Boom, R., Sol, C.J.A., Salimans, M.M.M., et al., Rapid and Simple Method for Purification of Nucleic Acids, J. Clin. Microbiol., 1990, vol. 28, pp. 495–503.PubMedGoogle Scholar
  44. 44.
    Yang, H., Golenberg, E.M., and Shoshani, J., Proboscidean DNA from Museum and Fossil Specimens: An Assessment of Ancient DNA Extraction and Amplification Techniques, Biochem. Genet., 1997, vol. 35, pp. 165–179.CrossRefPubMedGoogle Scholar
  45. 45.
    Golenberg, E.M., Fossil Samples: DNA from Plant Compression Fossils, in Ancient DNA, New York, 1994, pp. 233–252.Google Scholar
  46. 46.
    Hagelberg, E., Sykes, B., and Hedges, R., Ancient Bone DNA Amplified, Nature, 1989, vol. 342, p. 485.CrossRefPubMedGoogle Scholar
  47. 47.
    Kalmar, T., Bachrati, C.Z., Marcsik, A., and Rasko, I., A Simple and Efficient Method for PCR Amplifiable DNA Extraction from Ancient Bones, Nucleic Acids Res., 2000, vol. 28, no. 12, pp. E67–E67.CrossRefPubMedGoogle Scholar
  48. 48.
    Su, B., Wang, Y.-X., Lan, H., et al., Phylogenetic Study of Complete Cytochrome B Genes in Musk Deer (Genus Moschus) using Museum Samples, Mol. Phylogen. Evol., 1999, vol. 12, pp. 241–249.Google Scholar
  49. 49.
    Kholodova, M.V., Iston, E., and Milner-Gulland, E.J., Use of Hairs Collected in the Filed to Study Genetic Diversity of Wild Ungulates, Izv. Ross. Akad. Nauk, Ser. Biol., 2000, no. 6, pp. 695–701.Google Scholar
  50. 50.
    Wayne, R.K. and Jenks, S.M., Mitochondrial DNA Analysis Implying Extensive Hybridization of the Endangered Red Wolf Canis rufus, Nature, 1991, vol. 351, pp. 565–568.CrossRefGoogle Scholar
  51. 51.
    Ellegren, H., DNA Typing of Museum Birds, Nature, 1991, vol. 354, p. 113.CrossRefPubMedGoogle Scholar
  52. 52.
    Roy, M.S., Girman, D.J., Taylor, A.C., and Wayne, R.K., The Use of Museum Specimens to Reconstruct the Genetic Variability and Relationships of Extinct Population, Experientia, 1994, vol. 50, pp. 551–557.CrossRefPubMedGoogle Scholar
  53. 53.
    Zakharov, E.V., Chelomina, G.N., and Zhuravlev, Yu.N., Isolation and Analysis of DNA from Museum Specimens of Butterflies (Lepidoptera, Papilionidae) with the Aid of Polymerase Chain Reaction Using Arbitrary and Universal Gene-Specific Primers, Rus. J. Genet., 2000, vol. 36, no. 9, pp. 1017–1024.Google Scholar
  54. 54.
    Hoss, M. and Paabo, S., DNA Extraction from Pleistocene Bones by a Silica-Based Extraction Method, Nucleic Acids Res., 1993, vol. 21, pp. 3913–3914.PubMedGoogle Scholar
  55. 55.
    Kilpatrick, C.W., Noncryogenic Preservation of Mammalian Tissues for DNA Extraction: An Assessment of Storage Methods, Biochem. Genet., 2002, vol. 40, pp. 53–62.CrossRefPubMedGoogle Scholar
  56. 56.
    Litvinchuk, S.N., Kazakov, V.I., and Anatskii, S.Yu., Museum Collections of Animals in Molecular Genetic Studies, Usp. Sovrem. Biol., 2002, vol. 122, pp. 433–437.Google Scholar
  57. 57.
    Li, J., Liao, X., and Yang, H., Molecular Characterization of a Parasitic Tapeworm (Ligula) Based on DNA Sequences from Formalin-Fixed Specimens, Biochem. Genet., 2000, vol. 38, pp. 309–322.CrossRefPubMedGoogle Scholar
  58. 58.
    Paabo, S., Irwin, D.M., and Wilson, A.C., DNA Damage Promotes Jumping between Templates during Enzymatic Amplification, J. Biol. Chem., 1990, vol. 265, pp. 4718–4721.PubMedGoogle Scholar
  59. 59.
    Serre, D., Hofreiter, M., and Paabo, S., Mutations Induced by Ancient DNA Extracts?, Mol. Biol. Evol., 2004, vol. 21, pp. 1463–1467.PubMedGoogle Scholar
  60. 60.
    Hanni, C., Brousseau, T., Laudet, V., and Stehelin, D., Isopropanol Precipitation Removes PCR Inhibitors from Ancient Bone Extracts, Nucleic Acids Res., 1995, vol. 23, pp. 881–882.PubMedGoogle Scholar
  61. 61.
    Poinar, H.N., Hofreiter, M., Spaulding, W.G., et al., Molecular Coproscopy: Dung and Diet of the Extinct Ground Sloth Nothrotheriops Shastensis, Science, 1998, vol. 281, pp. 402–406.CrossRefPubMedGoogle Scholar
  62. 62.
    Salo, W.L., Aufderheide, A.C., Buikstra, J., and Holcomb, P., Identification of Mycobacterium tuberculosis DNA in a Pre-Columbian Peruvian Mummy, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 2091–2095.PubMedGoogle Scholar
  63. 63.
    Pusch, C. and Bachmann, L., Spiking of Contemporary Human Template DNA with Ancient DNA Extracts Induces Mutations under PCR and Generates Nonauthentic Mitochondrial Sequences, Mol. Biol. Evol., 2004, vol. 21, pp. 957–964.PubMedGoogle Scholar
  64. 64.
    Cooper, A. and Poinar, H.K., Ancient DNA: Do It Right or Not at All, Science, 2000, vol. 289, p. 1139.CrossRefPubMedGoogle Scholar
  65. 65.
    Gilbert, M.T., Hansen, A.J., Willerslev, E., et al., Characterization of Genetic Miscoding Lesions Caused by Postmortem Damage, Am. J. Hum. Genet., 2003, vol. 72, pp. 48–61.PubMedGoogle Scholar
  66. 66.
    Gilbert, M.T., Willerslev, E., Hansen, A.J., et al., Distribution Patterns of Postmortem Damage in Human Mitochondrial DNA, Am. J. Hum. Genet., 2003, vol. 72, pp. 32–47.PubMedGoogle Scholar
  67. 67.
    Lindahl, T., The Croonian Lecture, 1996: Endogenous Damage to DNA, Philos. Trans. R. Soc. London, B, 1996, vol. 351, pp. 1529–1538.Google Scholar
  68. 68.
    Hofreiter, M., Jaenicke, V., Serre, D., et al., DNA Sequences from Multiple Amplifications Reveal Artifacts Induced by Cytosine Deamination in Ancient DNA, Nucleic Acids Res., 2001, vol. 29, pp. 4793–4799.CrossRefPubMedGoogle Scholar
  69. 69.
    Hansen, A.J., Willerslev, E., Wiuf, C., et al., Statistical Evidence for Miscoding Lesions in Ancient DNA Templates, Mol. Biol. Evol., 2001, vol. 18, pp. 262–265.PubMedGoogle Scholar
  70. 70.
    Krings, M., Stone, A., Schmitz, R.W., et al., Neanderthal DNA Sequences and the Origin of Modern Humans, Cell (Cambridge, Mass.), 1997, vol. 90, pp. 19–30.CrossRefPubMedGoogle Scholar
  71. 71.
    Hedges, S.B. and Schweitzer, M.H., Detecting Dinosaur DNA, Science, 1995, vol. 268, pp. 1191–1192.PubMedGoogle Scholar
  72. 72.
    Pusch, C.M., Bachmann, L., Broghammer, M., and Scholtz, M., Internal Alu-Polymerase Chain Reaction: A Sensitive Contamination Monitoring Protocol for DNA Extracted from Prehistoric Animal Bones, Anal. Biochem., 2000, vol. 284, pp. 408–411.CrossRefPubMedGoogle Scholar
  73. 73.
    Wayne, R.K., Leonard, J.A., and Cooper, A., Full of Sound and Fury: The Recent History of Ancient DNA, Annu. Rev. Ecol. Syst., 1999, vol. 30, pp. 457–477.CrossRefGoogle Scholar
  74. 74.
    Thomas, R.H., Schaffner, W., Wilson, A.C., and Paabo, S., DNA Phylogeny of the Extinct Marsupial Wolf, Nature, 1989, vol. 340, pp. 465–469.PubMedGoogle Scholar
  75. 75.
    Orlando, L., Eisenmann, V., Reynier, F., et al., Morphological Convergence in Hippidion and Equus (Amerhippus) South American Equids Elucidated by Ancient DNA Analysis, J. Mol. Evol., 2003, vol. 57, pp. S29–S40.CrossRefPubMedGoogle Scholar
  76. 76.
    Kuznetsov, G.V., Petrov, N.B., Kulikov, E.E., et al., Taxonomic Status and Phylogenetic Relationships of a New Species and a New Genus of Artiodactyl Pseudonovibos spiralis W.P. Peter, A. Feiler, 1994 (Artiodactyla, Bovidae), Zool. Zh., 2001, vol. 80, pp. 1395–1403.Google Scholar
  77. 77.
    Yang, H., Golenberg, E.M., and Shoshani, J., Phylogenetic Resolution within the Elephantidae Using Fossil DNA Sequence from the American Mastodon (Mammut americanum) As an Outgroup, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 1190–1194.PubMedGoogle Scholar
  78. 78.
    Maca-Meyer, N., Carranza, S., Rando, J.C., et al., Status and Relationships of the Extinct Giant Canary Island Lizard Gallotia goliath (Reptilia: Lacertidae) Assessed Using Ancient mtDNA from Its Mummified Remains, Biol. J. Linn. Soc., 2003, vol. 80, pp. 659–670.CrossRefGoogle Scholar
  79. 79.
    Rancho La Brea: Treasures of the Tar Pits, Harris, J.M. and Jefferson, G.T., Eds., Los Angeles: Natural History Museum of Los Angeles, 1985.Google Scholar
  80. 80.
    Janczewski, D.N., Yuhki, N., Gilbert, D.A., et al., Molecular Phylogenetic Inference from Saber-Toothed Cat Fossils of Rancho La Brea, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 9769–9773.PubMedGoogle Scholar
  81. 81.
    Leonard, J.A., Wayne, R.K., and Cooper, A., Population Genetics of Ice Brown Bears, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 1651–1654.CrossRefPubMedGoogle Scholar
  82. 82.
    Hofreiter, M., Capelli, C., Krings, M., et al., Ancient DNA Analyses Reveal High Mitochondrial DNA Sequences Diversity and Parallel Morphological Evolution of Late Pleistocene Cave Bears, Mol. Biol. Evol., 2002, vol. 19, pp. 1244–1250.PubMedGoogle Scholar
  83. 83.
    Orlando, L., Bonjean, D., Bocherens, H., et al., Ancient DNA and Population Genetics of Cave Bears (Ursus spelaeus) through Space and Time, Mol. Biol. Evol., 2002, vol. 19, pp. 1920–1933.PubMedGoogle Scholar
  84. 84.
    Zukerkandl, E. and Pauling, L., Molecules As Documents of Evolutionary History, J. Theor. Biol., 1965, vol. 8, pp. 357–366.Google Scholar
  85. 85.
    Lambert, D.M., Ritchie, P.A., Millar, C.D., et al., Rate of Evolution in Ancient DNA from Adelie Penguins, Science, 2002, vol. 295, pp. 2270–2273.CrossRefPubMedGoogle Scholar
  86. 86.
    Hardy, C., Vigne, J.-D., Casane, D., et al., Origin of European Rabbit (Oryctolagus cuniculus) in a Mediterranean Island: Zooarcheology and Ancient DNA Examination, J. Evol. Biol., 1994, vol. 7, pp. 217–236.CrossRefGoogle Scholar
  87. 87.
    Hofkin, B.V., Wright, A., Altenbach, J., et al., Ancient DNA Gives Light to Galapagos Land Iguana Repatriation, Cons. Genet., 2003, vol. 4, pp. 105–108.Google Scholar
  88. 88.
    Watanobe, T., Ishiguro, N., Okumura, N., et al., Ancient Mitochondrial DNA Reveals the Origin of Sus scrofa from Rebun Island, Japan, J. Mol. Evol., 2001, vol. 52, pp. 281–289.PubMedGoogle Scholar
  89. 89.
    Watanobe, T., Ishiguro, N., Nakano, M., et al., Prehistoric Introduction of Domestic Pigs onto the Okinawa Island: Ancient Mitochondrial DNA Evidence, J. Mol. Evol., 2002, vol. 55, pp. 222–231.CrossRefPubMedGoogle Scholar
  90. 90.
    MacHuch, D.E. and Bradley, D.G., Livestock Genetic Origins: Goats Buck the Trend, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 5382–5384.Google Scholar
  91. 91.
    Jansen, T., Forster, P., Levine, M.A., et al., Mitochondrial DNA and Origins of the Domestic Horse, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 10 905–10 910.CrossRefGoogle Scholar
  92. 92.
    Vila, C., Leonard, J.A., Gotherstrom, A., et al., Widespread Origins of Domestic Horse Lineages, Science, 2001, vol. 291, pp. 474–477.CrossRefPubMedGoogle Scholar
  93. 93.
    Gutierrez, G., Sanchez, D., and Marin, A., A Reanalysis of the Ancient Mitochondrial DNA Sequences Recovered from Neanderthal Bones, Mol. Biol. Evol., 2002, vol. 19, pp. 1359–1366.PubMedGoogle Scholar
  94. 94.
    Relethford, J.H., Absence of Regional Affinities of Neanderthal DNA with Living Humans Does Not Reject Multiregional Evolution, Am. J. Phys. Anthropol., 2001, vol. 115, pp. 95–98.CrossRefPubMedGoogle Scholar
  95. 95.
    Krings, M., Geisert, H., Schmitz, R.W., et al., DNA Sequence of the Mitochondrial Hypervariable Region from the Neanderthal Type Specimen, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5581–5585.CrossRefPubMedGoogle Scholar
  96. 96.
    Dupanloup, I., Bertorelle, G., Chikhi, L., and Barbujani, G., Estimating the Impact of Prehistoric Admixture on the Genome of Europeans, Mol. Biol. Evol., 2004, vol. 21, pp. 1361–1372.PubMedGoogle Scholar
  97. 97.
    Krings, M., Capelli, C., Tschentscher, F., et al., A View of Neanderthal Genetic Diversity, Nat. Genet., 2000, vol. 26, pp. 144–146.PubMedGoogle Scholar
  98. 98.
    Relethford, J.H., Ancient DNA and the Origin of Modern Humans, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 390–391.CrossRefPubMedGoogle Scholar
  99. 99.
    Caramelli, D., Lalueza-Fox, C., Vernesi, C., et al., Evidence for a Genetic Discontinuity between Neanderthals and 24 000-Year-Old Anatomically Modern Europeans, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 6593–6597.CrossRefPubMedGoogle Scholar
  100. 100.
    Stringer, C., Out of Ethiopia, Nature, 2003, vol. 423, pp. 692–694.CrossRefPubMedGoogle Scholar
  101. 101.
    Ingman, N., Kaessmann, H., Paabo, S., and Syllensten, U., Mitochondrial Genome Variation and the Origin of Modern Humans, Nature, 2000, vol. 408, pp. 708–713.PubMedGoogle Scholar
  102. 102.
    Scholz, M., Bachmann, L., Nicholson, G.J., et al., Genomic Differentiation of Neanderthals and Anatomically Modern Man Allows a Fossil-DNA-Based Classification of Morphologically Indistinguishable Hominid Bones, Am. J. Hum. Genet., 2000, vol. 66, pp. 1927–1932.CrossRefPubMedGoogle Scholar
  103. 103.
    Ovchinnikov, I.V., Gotherstrom, A., Romanova, G.P., et al., Molecular Analysis of Neanderthal DNA from the Northern Caucasus, Nature, 2000, vol. 404, pp. 490–493.CrossRefPubMedGoogle Scholar
  104. 104.
    Hawks, J. and Wolpoff, M., Paleoanthropology and the Population Genetics of Ancient Genes, Am. J. Phys. Anthropol., 2001, vol. 114, pp. 269–272.CrossRefPubMedGoogle Scholar
  105. 105.
    Nordborg, M., On the Probability of Neanderthal Ancestry, Am. J. Hum. Genet., 1998, vol. 63, pp. 1237–1240.CrossRefPubMedGoogle Scholar
  106. 106.
    Adcock, G., Dennis, E., Easteal, S., et al., Mitochondrial DNA Sequences in Ancient Australians: Implication for Modern Human Origins, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 537–542.CrossRefPubMedGoogle Scholar
  107. 107.
    Kaestle, F.A. and Smith, D.G., Ancient Mitochondrial DNA Evidence for Prehistoric Population Movement: The Numic Expansion, Am. J. Phys. Anthropol., 2001, vol. 115, pp. 1–12.CrossRefPubMedGoogle Scholar
  108. 108.
    Kulikov, E.E., Buzhilova, A.P., and Poltaraus, A.B., Molecular Genetic Characteristics of Medieval Populations of the Russian North, Rus. J. Genet., 2004, vol. 40, no. 1, pp. 1–9.CrossRefGoogle Scholar
  109. 109.
    Naumova, O.Yu., Rychkov, S.Yu., Bazaliiskii, V.I., et al., Molecular Genetic Characteristics of the Neolithic Population of the Baikal Region: RFLP of the Ancient mtDNA from Skeletal Remains Found in the Ust-Ida Burial Ground, Rus. J. Genet., 1997, vol. 33, no. 10, pp. 1215–1221.Google Scholar
  110. 110.
    Merriwether, D.A., Huston, S., Iyengar, et al., Mitochondrial Versus Nuclear Admixture Estimates Demonstrate a Past History of Directional Mating, Am. J. Phys. Anthropol., 1997, vol. 102, pp. 153–159.CrossRefPubMedGoogle Scholar
  111. 111.
    Gonzalez-Oliver, A., Marquez-Morfin, L., Jimenez, J.C., and Torre-Blanco, A., Founding Amerindian Mitochondrial DNA Lineages in Ancient Maya from Xcaret, Quintana Roo, Am. J. Phys. Anthropol., 2001, vol. 116, pp. 230–235.PubMedGoogle Scholar
  112. 112.
    Oota, H., Kurosaki, K., Pookajorn, S., et al., Genetic Study of the Paleolithic and Neolithic Southeast Asians, J. Hum. Biol., 2001, vol. 73, pp. 225–231.Google Scholar
  113. 113.
    Schurr, T.G., The Peopling of the New Word: Perspectives from Molecular Anthropology, Annu. Rev. Anthropol., 2004, vol. 33, pp. 551–583.CrossRefGoogle Scholar
  114. 114.
    Handt, O., Richards, M., Trommsdorff, M., et al., Molecular Genetic Analyses of the Tyrolean Ice Man, Science, 1994, vol. 264, pp. 1775–1778.PubMedGoogle Scholar
  115. 115.
    Wang, L., Oota, H., Saitou, N., et al., Genetic Structure of a 2500-Year-Old Human Population in China and Its Spatiotemporal Changes, Mol. Biol. Evol., 2000, vol. 17, pp. 1396–1400.PubMedGoogle Scholar
  116. 116.
    Takahata, N. and Satta, G., Evolution of the Primate Lineage Leading to Modern Humans: Phylogenetic and Demographic Inferences from DNA Sequences, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4811–4815.CrossRefPubMedGoogle Scholar
  117. 117.
    Paabo, S., Gifford, J.A., and Wilson, A.C., Mitochondrial DNA Sequences from a 7000-Year-Old Brain, Nucleic Acids Res., 1988, vol. 16, pp. 9775–9779.PubMedGoogle Scholar
  118. 118.
    Kuch, M., Rohland, N., Betancourt, J.L., et al., Molecular Analysis of a 11 700-Year-Old Rodent Midden from the Atacama Desert, Chile, Mol. Ecol., 2002, vol. 11, pp. 913–924.CrossRefPubMedGoogle Scholar
  119. 119.
    Hofreiter, M., Poinar, H.N., Spaulding, W.G., et al., A Molecular Analysis of Ground Sloth Diet through the Last Glaciation, Mol. Ecol., 2000, vol. 9, pp. 1975–1984.CrossRefPubMedGoogle Scholar
  120. 120.
    Poinar, H.N., Kuch, M., McDonald, G., et al., Nuclear Gene Sequences from Late Pleistocene Sloth Coprolite, Curr. Biol., 2003, vol. 13, pp. 1150–1152.CrossRefPubMedGoogle Scholar
  121. 121.
    Poinar, H., Kuch, M., Sobolik, K., et al., A Molecular Analysis of Dietary Diversity for Three Archaic Native Americans, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 4317–4322.CrossRefPubMedGoogle Scholar
  122. 122.
    Rollo, F., Ubaldi, M., Ermini, L., and Marota, I., Otzi’s Last Meals: DNA Analysis of the Intestinal Content of the Neolithic Glacier Mummy from the Alps, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 12 594–12 599.CrossRefGoogle Scholar
  123. 123.
    Schmalenberger, A. and Tebbe, C.C., Bacterial Diversity in Maize Rhizospheres: Conclusions on the Use of Genetic Profiles Based on PCR-Amplified Partial Small Subunit rRNA Genes in Ecological Studies, Mol. Ecol., 2003, vol. 12, pp. 251–262.CrossRefPubMedGoogle Scholar
  124. 124.
    Zink, A.R., Reischl, U., Wolf, H., and Nerlich, A.G., Molecular Analysis of Ancient Microbial Infections, FEMS Microbiol. Lett., 2002, vol. 213, pp. 141–147.PubMedGoogle Scholar
  125. 125.
    Zhu, D., Degnan, S., and Moritz, C., Evolutionary Distinctiveness and Status of the Endangered Lake Eacham Rainbowfish (Melanotaenia eachamensis), Conserv. Biol., 1998, vol. 12, pp. 80–93.CrossRefGoogle Scholar
  126. 126.
    Ubaldi, M., Luciani, S., Marota, F.G., et al., Sequence Analysis of Bacterial DNA in the Colon of an Andean Mummy, Am. J. Phys. Anthropol., 1998, vol. 107, pp. 285–295.CrossRefPubMedGoogle Scholar
  127. 127.
    Hummel, S., Schmidt, D., Kahle, M., and Herrmann, B., ABO Blood Group Genotyping of Ancient DNA by PCR-RFLP, Int. J. Legal Med., 2002, vol. 116, pp. 327–333.PubMedGoogle Scholar
  128. 128.
    Pfeiffer, H., Benthhaus, S., Rolf, B., and Brinkmann, B., The Kaiser’s Tooth, Int. J. Legal Med., 2003, vol. 117, pp. 118–120.PubMedGoogle Scholar
  129. 129.
    Holm, S., The Privacy of Tutankhamen—Utilizing the Genetic Information in Stored Tissue Samples, Theor. Med., 2001, vol. 22, pp. 437–449.Google Scholar
  130. 130.
    Kaestle, F.A. and Horsburgh, A.K., Ancient DNA in Anthropology: Methods, Applications, and Ethics, Yearbook Phys. Anthropol., 2002, vol. 45, pp. 92–130.Google Scholar
  131. 131.
    Woodward, S.R., Putting the Pieces Together: DNA and the Dead Sea Scrolls, LDS Perspectives on the Dead Sea, Parry, D.W. and Pike, D.M., Eds., Provo, Utah: FARMS, 1997, pp. 191–205.Google Scholar
  132. 132.
    Clisson, I., Keyser, C., Grancfort, H.-P., et al., Genetic Analysis of Human Remains from a Double Inhumation in a Frozen Kurgan in Kazakhstan, Int. J. Legal Med., 2002, vol. 116, pp. 304–308.PubMedGoogle Scholar
  133. 133.
    Poltoraus, A. and Kulikov, Y., Molecular Biologists Reveal Historical Secrets ( Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. N. Chelomina
    • 1
  1. 1.Institute of Biology and Soil ScienceRussian Academy of SciencesVladivostokRussia

Personalised recommendations