Advertisement

Russian Journal of Genetics

, Volume 42, Issue 2, pp 192–207 | Cite as

Analysis of polymorphism at nine nuclear genome DNA loci in Maris

  • V. L. Akhmetova
  • R. I. Khusainova
  • E. B. Yuryev
  • I. A. Tuktarova
  • N. V. Petrova
  • S. V. Makarov
  • O. I. Kravchuk
  • G. V. Pai
  • E. V. Balanovskaya
  • E. K. Ginter
  • E. K. Khusnutdinova
Human Genetics

Abstract

Population genetic survey of the indigenous populations of the Marii El Republic, represented by the two major ethnographic groups of Maris, Meadow (five samples from Morkinsk, Orshansk, Sernursk, Sovetsk, and Zvenigovsk districts) and Mountain (one sample from Gornomariisk district) Maris, was carried out. All Mari groups were examined at nine polymorphic DNA loci of nuclear genome, VNTR(PAH) (N=422), STR(PAH) (N=152), VNTR(ApoB) (N=294), VNTR(DAT1) (N=363), VNTR(eNOS) (N=373), ACE (N=412), IVS6aGATT (N=513), D7S23(KM.19) (N=494), and D7S8 (N=366). Allele and genotype frequency distribution patterns were obtained for individual samples and ethnographic groups, as well as for the ethnic group overall. In each of six Mari samples examined, the deficit of heterozygotes was observed, i.e., the mean observed heterozygosity was lower than the expected one. The indices of mean heterozygosity, \(\bar H_S = 0.455\), and interpopulation differentiation, \(\bar F_{ST} = 0.0024\), for the Mari gene pool were obtained using a set of DNA markers analyzed. The highest level of interpopulation differentiation is characteristic of ACE loci (FST=0.0104) and D7S23(KM.19/PstI) (FST=0.0123). Analysis of the genetic distances and interpopulation differentiation (FST) showed that the main part of genetic diversity in Maris was determined by the differentiation between the populations of Meadow Maris. The contribution of the differences between the ethnographic groups of Mountain and Meadow Maris to the ethnic gene pool was small. It is suggested that the main role in the formation of the Mari gene pool is played by the geographic factor.

Keywords

Gene Pool Nuclear Genome Indigenous Population Geographic Factor Genotype Frequency Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kravchuk, O.I., Spitsyn, V.A., Ginter, E.K., and Makarov, S.V., Population Genetic Characteristics of Highland and Meadow Mari: Genetic Markers, Russ. J. Genet., 1996, vol. 32, no. 4, pp. 495–499.Google Scholar
  2. 2.
    Kravchuk, O.I., Spitsyn, V.A., and Ginter, E.K., Genetic Structure of the Mari Population and Its Genetic Position in the System of Other Finno-Ugrian Population Groups, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1109–1118.Google Scholar
  3. 3.
    Kravchuk, O.I., Balanovskii, O.P., Nurbaev, S.D., et al., Gene Geography of the Indigenous Population of Marii E1: Immunological and Biochemical Polymorphism, Russ. J. Genet., 1998, vol. 34, no. 11, pp. 1315–1326.Google Scholar
  4. 4.
    Balanovskii, O.P., Nurbaev, S.D., Kravchuk, O.I., et al., Synthetic Maps of the Mari Gene Pool: Immunological and Biochemical Polymorphism, Russ. J. Genet., 1999, vol. 35, no. 1, pp. 64–71.Google Scholar
  5. 5.
    Nasledstvennye bolezni v populyatsiyakh cheloveka (Herditary Diseases in Human Poulations), Ginter, E.K., Ed., Moscow: Meditisina, 2002.Google Scholar
  6. 6.
    Zenkevich, P.I., Characterization of Eastern Finns, Tr. Inst. Antropol. MGU, Moscow, 1941, issue 6, pp. 21–80.Google Scholar
  7. 7.
    Mathew, C.C., The Isolation of High-Molecular-Weight Eukaryotic DNA, Methods in Molecular Biology, Walker, J.M., Ed., New York: Humana, 1984, pp. 31–34.Google Scholar
  8. 8.
    Goltsov, A.A., Eisensmith, R.C., Konecki, D.S., et al., Association between Mutations and VNTR in the Human Phenylalanine Hydroxylase Gene, Am. J. Hum. Genet., 1992, vol. 51, no. 3, pp. 627–636.PubMedGoogle Scholar
  9. 9.
    Goltsov, A.A., Eisensmith, R.C., Naughton, E.R., et al., A Single Polymorphic STR System in the Human Phenylalanine Hydroxylase Gene Permits Rapid Prenatal Diagnosis and Carrier Screening for Phenylketonuria, Hum. Mol. Genet., 1993, vol. 2, pp. 577–581.PubMedGoogle Scholar
  10. 10.
    Boerwinkle, E., Xiong, W., Fourest, E., et al., Rapid Typing of Tandemly Repeated Hypervariable Loci by the Polymerase Chain Reaction: Application to the Apolipoprotein B 3′ Hypervariable Region, Proc. Natl. Acad. Sci. USA, 1989, vol. 89, pp. 212–216.Google Scholar
  11. 11.
    Gill, M., Daly, G., Heron, S., et al., Confirmation of Association between Attention Deficit Hyperactivity Disorder and a Dopamine Transporter Polymorphism, Mol. Psychiatry, 1997, vol. 2, no. 4, pp. 311–313.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang, X.L., Sim, A.S., Badenhop, R.F., et al., A Smoking-Dependent Risk of Coronary Artery Disease Associated with the Polymorphism of Endothelial Nitric Oxide Synthase Gene, Nat. Med., 1996, vol. 2, pp. 41–45.PubMedGoogle Scholar
  13. 13.
    Rigat, B., Hubert, C., Corvol, P., and Soubrier, F., PCR Detection of the Insertion/Deletion Polymorphism of the Human Angiotensin-Converting Enzyme Gene (DCP1) (Dipeptidyl Carboxypeptidase 1), Nucleic Acids Res., 1992, vol. 20, p. 1433.PubMedGoogle Scholar
  14. 14.
    Chebab, F.F., Johnson, J., Louie, E., et al., A Dimorphic 4-bp Repeat in the Cystic Fibrosis Gene Is in Absolute Linkage Disequilibrium with the de1F508 Mutation: Implications for Prenatal Diagnosis and Mutation Origin, Am. J. Hum. Genet., 1991, vol. 48, pp. 223–226.Google Scholar
  15. 15.
    Feldman, G.L., Williamson, R., and Beaudet, A.L., Prenatal Diagnosis of Cystic Fibrosis by DNA Amplification for Detection of KM.19 Polymorphism, Lancet, 1988, no. 9, p. 102.Google Scholar
  16. 16.
    Petrova, N.V., Ginter, E.K., Kapranov, N.I., and El’chinova, G.I., Portion of Certain Cystic Fibrosis Gene Mutations and Linkage Disequilibrium between the CFTR Gene Locus and Two DNA Marker Loci in Russian Populations, Russ. J. Genet., 1994, vol. 30, no. 7, pp. 851–854.Google Scholar
  17. 17.
    Rousset, F., Inferences from Spatial Population Genetics, Handbook of Statistical Genetics, Balding, D., Bioshop, M., and Cannings, C., Eds., New York: Wiley, 2001, pp. 239–269.Google Scholar
  18. 18.
    Botstein, D., White, R.L., Skolnick, M., and Davis, R.W., Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphism, Am. J. Hum. Genet., 1980, vol. 32, pp. 314–331.PubMedGoogle Scholar
  19. 19.
    Cavalli-Sforza, L.L. and Edwards, A.W.F., Phylogenetic Analysis: Models and Estimation Procedures, Am. J. Hum. Genet., 1967, vol. 19, pp. 233–257.PubMedGoogle Scholar
  20. 20.
    Akhmetova, V.L., Viktorova, T.V., and Khusnutdinova, E.K., Molecular Genetic Analysis of the VNTR Polymorphism at the Phenylalanine Hydroxylase Gene in Populations of the Volga-Ural Region, Russ. J. Genet., 2000, vol. 36, no. 8, pp. 968–971.Google Scholar
  21. 21.
    Akhmetova, V.L., Molecular Genetic Analysis of the Phenylalanine Hydroxylase Gene in Populations of the Volga-Ural Region, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Med.-Genet. Res. Center, 2001.Google Scholar
  22. 22.
    Eisensmith, R.C. and Goltsov, A.A., A Simple, Rapid and Highly Informative PCR-Based Procedure for Prenatal Diagnosis and Carrier Screening of Phenylketonuria, Prenatal Diagnosis, 1994, vol. 14, pp. 1113–1118.PubMedGoogle Scholar
  23. 23.
    Baranovskaya, S.S., Molecular Genetic Analysis of Phenylketonuria and St. Petersburg, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg: St. Petersburg. Med. Akad., 1996.Google Scholar
  24. 24.
    Boerwinkle, E., Lee, S.S., Butler, R., et al., Rapid Typing of Apolipoprotein B DNA Polymorphism by DNA Amplification, Atherosclerosis, 1990, vol. 81, pp. 225–233.CrossRefPubMedGoogle Scholar
  25. 25.
    Lahermo, P., Sajantila, A., Sistonen, P., et al., The Genetic Relationship between the Finns and the Finnish Saami (Lapps): Analysis of Nuclear DNA and mtDNA, Am. J. Hum. Genet., 1996, vol. 58, pp. 1309–1322.PubMedGoogle Scholar
  26. 26.
    Chistyakov, D.A., Gavrilov, D.K., Ovchinnikov, I.V., et al., Analysis of the Allele Frequency Distributions of Four Hypervariable Tandem Repeats in Unrelated Ethnic Russians from Moscow, Mol. Biol., 1993, vol. 27, no. 6, pp. 1304–1314.Google Scholar
  27. 27.
    Renges, H., Peacock, R., Dunning, A., et al., Genetic Relationship between the 3′ VNTR and Diallelic Apolipoprotein B Gene Polymorphism: Haplotype Analysis in Individuals of European and South Asian Origin, Ann. Hum. Genet., 1992, vol. 56, pp. 11–33.PubMedGoogle Scholar
  28. 28.
    Deka, R., Chakraborty, R., De Croo, S., et al., Characteristics of Polymorphism at a VNTR Locus 3′ to the Apolipoprotein B Gene in Five Human Populations, Am. J. Hum. Genet., 1992, vol. 51, pp. 1325–1333.PubMedGoogle Scholar
  29. 29.
    Khusnutdinova, E.K., Khidiyatova, I.M., Galeeva, A.R., et al., Analysis of the Polymorphism of the Hypervariable Locus of Apolipoprotein B in Volga-Ural Populations, Russ. J. Genet., 1996, vol. 32, no. 12, pp. 1461–1465.Google Scholar
  30. 30.
    Galeeva, A.R., Yur’ev, E.B., and Khusnutdinova, E.K., Polymorphism of the Dopamine Transporter Gene in Populations of the Volga-Ural Region, Russ. J. Genet., 2001, vol. 37, no. 7, pp. 847–849.Google Scholar
  31. 31.
    Vandenberg, D.J., Persico, A.M., Hawkins, A.L., et al., Human Dopamine Transporter Gene (DAT1) Maps to Chromosome 5p15.3 and Displays a VNTR, Genomics, 1992, vol. 14, pp. 1104–1106.Google Scholar
  32. 32.
    Persico, A.M. and Macciardi, F., Genomic Association between Dopamine Transporter Gene Polymorphisms and Schizophrenia, Am. J. Med. Genet., 1997, vol. 74, pp. 53–57.CrossRefPubMedGoogle Scholar
  33. 33.
    Mustafina, O.E., Shagisultanova, L.I., Nasibullin, T.R., et al., Endothelial Nitric Oxide Synthase Gene Minisatellite Polymorphism in Populations of the Volga-Ural Region and Analysis of Its Association with Myocardial Infarction and Essential Hypertension, Russ. J. Genet., 2001, vol. 37, no. 5, pp. 552–564.CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Kikuchi, Sh., Suzuki, H., et al., Endothelial Nitric Oxide Synthase Gene Polymorphism in Intron 4 Affects Progression of Renal Failure in Nondiabetic Renal Diseases, Nephrol. Dial. Transplant., 1999, vol. 14, pp. 2898–2902.PubMedGoogle Scholar
  35. 35.
    Puzyrev, K.V., Clinical Genetic Study of Factors Predisposing to Essential Hypertension and Idiopathic Hypertrophic Cardiomyopathy, Cand. Sci. (Med.) Dissertation, Tomsk: Tomsk. Res. Center, 1999.Google Scholar
  36. 36.
    Akar, N., Akar, E., Cin, S., et al., Endothelial Nitric Oxide Synthase Intron 4, 27-bp Repeat Polymorphism in Turkish Patients with Deep Vein Thrombosis and Cerebrovascular Accidents, Thrombosis Res., 1999, vol. 94, pp. 63–64.CrossRefGoogle Scholar
  37. 37.
    Mustafina, O.E., Tuktarova, I.A., Bikmeeva, A.M., et al., Investigation of the Insertion-Deletion Polymorphism of the Gene for Angiotensin-Converting Enzyme in Populations of the Volga-Ural Region, Russ. J. Genet., 2001, vol. 37, no. 3, pp. 335–339.CrossRefGoogle Scholar
  38. 38.
    Cambien, F., Poirier, O., Lecerf, L., et al., Deletion Polymorphism in the Gene for Angiotensin-Converting Enzyme Is a Potent Risk Factor for Myocardial Infarction, Nature, 1992, vol. 359, pp. 641–644.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee, E., Population Genetics of the Angiotensin-Converting Enzyme in Chinese, Brit. J. Clin. Pharmacol., 1994, vol. 37, pp. 212–214.Google Scholar
  40. 40.
    Stepanov, V.A., Etnogenomika naseleniya Severnoi Evrazii (Ethnogenetics of North Eurasian Population), Tomsk: Pechatnaya Manufaktura, 2002.Google Scholar
  41. 41.
    Korytina, G.F., Viktorova, T.V., and Khusnutdinova, E.K., Polymorphism of Tetranucleotide Tandem Repeats of CFTR Intron 6B in Populations of the Volga-Ural Region, Mol. Biol., 2002, vol. 36, no. 3, pp. 442–446.CrossRefGoogle Scholar
  42. 42.
    Amosenko, F.A., Sazonova, M.A., Kapranov, N.I., et al., Analysis of Various Polymorphic Markers of the CFTR Gene in Cystic Fibrosis Patients and Healthy Donors from the Moscow Region, Russ. J. Genet., 1995, vol. 31, no. 4, pp. 457–459.Google Scholar
  43. 43.
    Serre, J., Simon-Bouy, B., Mornet, E., et al., Studies of RFLP Closely Linked to the Cystic Fibrosis Locus throughout Europe Lead to New Considerations in Populations Genetics, Hum. Genet., 1990, vol. 84, pp. 449–454.CrossRefPubMedGoogle Scholar
  44. 44.
    Khusnutdinova, E.K., Molekulyarnaya etnogenomika narodov Volgo-Ural’skogo regiona (Molecular Ethnogenetics of Populations of the Volga-Ural Region), Ufa: Gilem, 1999.Google Scholar
  45. 45.
    El’chinova, G.I., Startseva, E.A., Mamedova, R.I., et al., Population Structure of the Gorno-Mariiskii Region of the Marii El Republic, Russ. J. Genet., 1995, vol. 31, no. 10, pp. 1212–1218.Google Scholar
  46. 46.
    El’chinova, G.I., Startseva, E.A., and Moshkina, I.S., Lugovye Maris: Inbreeding and Endogamy, Russ. J. Genet., 1996, vol. 32, no. 9, pp. 1302–1304.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. L. Akhmetova
    • 1
  • R. I. Khusainova
    • 1
  • E. B. Yuryev
    • 1
  • I. A. Tuktarova
    • 1
  • N. V. Petrova
    • 2
  • S. V. Makarov
    • 2
  • O. I. Kravchuk
    • 2
  • G. V. Pai
    • 2
  • E. V. Balanovskaya
    • 2
  • E. K. Ginter
    • 2
  • E. K. Khusnutdinova
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Research CenterRussian Academy of SciencesUfaRussia
  2. 2.Medical Genetic Research CenterRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations