Advertisement

Russian Journal of Genetics

, Volume 42, Issue 1, pp 1–15 | Cite as

Genetic mapping of loci responsible for milk production traits in dairy cattle

  • M. G. Smaragdov
Theoretical Papers and Reviews

Abstract

The review presents a definition of loci controlling quantitative traits (quantitative trait loci, QTLs) and localization of all currently known QTLs responsible for milk production traits in dairy cattle. The QTL number and chromosome localization are verified, with special reference to chromosomes 1, 3, 6, 14, 20, and 23. In a number of cases, close location of QTLs for mastitis and for milk production traits was found. Some aspects of QTL pleiotropy and epistasis are discussed and mapping methods of major QTLs are listed.

Keywords

Quantitative Trait Locus Quantitative Trait Genetic Mapping Special Reference Mapping Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mackay, T.F.C., The Genetic Architecture of Quantitative Traits: Lessons from Drosophila, Curr. Opin. Genet. Dev., 2004, vol. 14, pp. 253–257.CrossRefPubMedGoogle Scholar
  2. 2.
    Phillips, P.C., The Language of Gene Interaction, Genetics, 1998, vol. 149, pp. 1167–1171.PubMedGoogle Scholar
  3. 3.
    Carlborg, O. and Haley, C.S., Epistasis: Too Often Neglected in Complex Trait Studies?, Nature, 2004, vol. 5, pp. 618–625.Google Scholar
  4. 4.
    Weller, J.I., Kashi, Y., and Soller, M., Power of Daughter and Granddaughter Designs for Determining Linkage between Marker Loci and QTL in Dairy Cattle, J. Dairy Sci., 1990, vol. 73, pp. 2525–2537.PubMedGoogle Scholar
  5. 5.
    Ron, M., Feidmesser, M., Golik, M., et al., A Complete Genome Scan of the Israeli Holstein Population for QTL by a Daughter Design, J. Dairy Sci., 2004, vol. 87, pp. 476–490.PubMedGoogle Scholar
  6. 6.
    Knott, S.A., Elsen, J.M., and Haley, C.S., Multiple Marker Mapping of QTL in Half Sib Populations, Proc. 5th World Congr. on Genetics Applied to Livestock Production, Guelph, Canada, 1994, vol. 21, pp. 33–36.Google Scholar
  7. 7.
    Haley, C.S. and Knott, S.A., A Simple Regression Method for Mapping QTL in Line Crosses Using Flanking Markers, Heredity, 1992, vol. 69, pp. 315–324.Google Scholar
  8. 8.
    Grignola, F.E., Zhang, Q., and Hoeschele, I., Mapping Linked QTL Via Residual Maximum Likelihood, Genet. Sel. Evol., 1997, vol. 29, pp. 529–544.Google Scholar
  9. 9.
    Knott, S.A. and Haley, C.S., Multitrait Least Squares for QTL Detection, Genetics, 2000, vol. 156, pp. 899–911.PubMedGoogle Scholar
  10. 10.
    Korol, A.B., Ronin, Y.I., Nevo, E., and Hayes, P., Enhanced Efficiency QTL Mapping Analysis Based on Multiv ariate Complexes of Quantitative Traits, Genetics, 2001, vol. 157, pp. 1789–1803.PubMedGoogle Scholar
  11. 11.
    De Koning, D.J., Schulman, N.F., Elo, K., et al., Mapping of Multiple QTL by Simple Regression in Half-Sib Designs, J. Anim. Sci., 2001, vol. 79, pp. 616–622.PubMedGoogle Scholar
  12. 12.
    Meuwissen, T.H.E. and Goddar, M.E., Fine Mapping of QTL Using Linkage Disequilibria with Closely Linked Marker Loci, Genetics, 2000, vol. 155, pp. 421–430.PubMedGoogle Scholar
  13. 13.
    Mosig, M.O., Lipkin, E., Khutoreskaya, G., et al., A Whole Genome Scan for QTL Affecting Milk Protein Percentage in Israeli-Holstein Cattle by Means of Selective Milk DNA Pooling in a Daughter Design, Using an Adjusted False Discovery Rate Criterion, Genetics, 2001, vol. 157, pp. 1683–1698.PubMedGoogle Scholar
  14. 14.
    Farnir, F., Coppieters, W., Arranz, J.-J., et al., Extensive Genome-Wide Linkage Disequilibrium in Cattle, Genome Res., 2000, vol. 10, pp. 220–227.CrossRefPubMedGoogle Scholar
  15. 15.
    Grisart, B., Coppieters, W., Farnir, F., et al., Positional Candidate Cloning of a QTL in Dairy Cattle: Identification of a Missense Mutation in the Bovine DGAT1 Gene with Major Effect on Milk Yield and Composition, Genome Res., 2002, vol. 12, pp. 222–231.CrossRefPubMedGoogle Scholar
  16. 16.
    Blott, S., Kim, J-J., Moisio, S., et al., Molecular Dissection of a QTL: A Phenylalanine-to-Tyrosine Substitution in the Transmembrane Domain of the Bovine Growth Hormone Receptor Is Associated with a Major Effect on Milk Yield and Composition, Genetics, 2003, vol. 163, pp. 253–266.PubMedGoogle Scholar
  17. 17.
    Riquet, J., Coppieters, W., Cambisano, N., et al., Fine-Mapping of QTL by Identity by Descent in Outbred Populations: Application to Milk Productionin Dairy Cattle, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 9252–9257.CrossRefPubMedGoogle Scholar
  18. 18.
    Grapes, L., Dekkers, J.C.M., Rothschild, M.F., and Fernando, R.L., Comparing Linkage Disequilibrium-Based Methods for Fine Mapping QTL, Genetics, 2004, vol. 166, pp. 1561–1570.CrossRefPubMedGoogle Scholar
  19. 19.
    Bovenhuis, H. and Schrooten, C., QTL for Milk Production Traits in Dairy Cattle, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, vol. 31, pp. 27–34.Google Scholar
  20. 20.
    Kathar, M.S., Thomsen, P.C., Tammen, I., and Raadsma, H.W., QTL Mapping in Dairy Cattle: Review and Meta-Analysis, Genet. Sel. Evol., 2004, vol. 36, pp. 163–190.Google Scholar
  21. 21.
    Nadesalingam, J., Plante, Y., and Gibson, J.P., Detection of QTL for Milk Production on Chromosomes 1 and 6 of Holstein Cattle, Mamm. Genome, 2001, vol. 12, pp. 27–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Georges, M., Nielsen, D., Mackinnon, M., et al., Mapping QTL Controlling Milk Production in Dairy Cattle by Exploiting Progeny Testing, Genetics, 1995, vol. 139, pp. 907–920.PubMedGoogle Scholar
  23. 23.
    Liu, Y., Jansen, G.B., and Lin, C.Y., QTL Mapping for Dairy Cattle Production Traits Using a Maximum Likelihood Method, J. Dairy Sci., 2004, vol. 87, pp. 491–500.PubMedGoogle Scholar
  24. 24.
    Zhang, Q., Boichard, D., Hoeschele, I., et al., Mapping QTL for Milk Production and Health of Dairy Cattle in a Large Outbred Pedigree, Genetics, 1998, vol. 149, pp. 1959–1973.PubMedGoogle Scholar
  25. 25.
    Rodriguez-Zas, S.L., Southey, B.R., Heyen, D.W., and Lewin, H.A., Interval and Composite Interval Mapping of Somatic Cell Score, Yield, and Components of Milk in Dairy Cattle, J. Dairy Sci., 2002, vol. 85, pp. 3081–3091.PubMedGoogle Scholar
  26. 26.
    Schulman, N.F., Viitala, S.M., de Koning, D.J., et al., QTL for Health in Finnish Ayrshire Cattle, J. Dairy Sci., 2004, vol. 87, pp. 443–449.PubMedGoogle Scholar
  27. 27.
    Viitala, S.M., Schulman, N.F., de Koning, D.J., et al., QTL Affecting Milk Production Traits in Finnish Ayrshire Dairy Cattle, J. Dairy Sci., 2003, vol. 86, pp. 1828–1836.PubMedGoogle Scholar
  28. 28.
    Maki-Tanila, A., De Koning, D.J., Elo, K.T., et al., Mapping Multiple QTL by Regression in Half Sib Designs, Proc. 6th World Congf. On Genetics Applied to Liverstock Production, Armidale: Univ. of New England, 1998, vol. 26, pp. 269–272.Google Scholar
  29. 29.
    Heyen, D.W., Weller, J.I., Ron, M., et al., A Genome Scan for QTL Influencing Milk Production and Health Traits in Dairy Cattle, Physiol. Genome, 1999, vol. 1, pp. 165–175.Google Scholar
  30. 30.
    Ashwell, M.S., Heyen, D.W., Sonstegard, T.S., et al., Detection of QTL Affecting Milk Production, Health, and Reproductive Traits in Holstein Cattle, J. Dairy Sci., 2004, vol. 87, pp. 468–475.PubMedGoogle Scholar
  31. 31.
    Kuhn, C., Bennewitz, J., Reinsch, N., et al., QTL Mapping of Functional Traits in the German Holstein Cattle Population, J. Dairy Sci., 2003, vol. 86, pp. 360–368.Google Scholar
  32. 32.
    Bennewitz, J., Reinsch, N., Grohs, C., et al., Combined Analysis of Data from Two Granddaughter Designs: A Simple Strategy for QTL Confirmation and Increasing Experimental Power in Dairy Cattle, Genet. Sel. Evol., 2003, vol. 35, pp. 319–338.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodriguez-Zas, S.L., Southey, B.R., Heyen, D.W., and Lewin, H.A., Detection of QTL Influencing Dairy Traits Using a Model for Longitudinal Data, J. Dairy Sci., 2002, vol. 85, pp. 2681–2691.PubMedGoogle Scholar
  34. 34.
    Plante, Y., Gibson, J.P., Nadesalingam, J., et al., Detection of QTL Affecting Milk Production Traits on 10 Chromosomes in Holstein Cattle, J. Dairy Sci., 2001, vol. 84, pp. 1516–1524.PubMedGoogle Scholar
  35. 35.
    Boichard, D., Grohs, C., Bourgeois, F., et al., Detection of Genes Influencing Economic Traits in Three French Dairy Cattle Breeds, Genet. Sel. Evol., 2003, vol. 35, pp. 77–101.CrossRefPubMedGoogle Scholar
  36. 36.
    Olsen, H.G., Gomez-Raya, L., Vage, D.I., et al., A Genome Scan for QTL Affecting Milk Production in Norwegian Dairy Cattle, J. Dairy Sci., 2002, vol. 85, pp. 3124–3130.PubMedGoogle Scholar
  37. 37.
    Ron, M., Heyen, D.W., Weller, J.I., et al., Detection and Analysis of a Locus Affecting Milk Concentration in the US and Israeli Dairy Cattle Populations, Proc. 6th World Congr. on Genetics Applied to Livestock Production, Armidale: Univ. of New England, 1998, vol. 26, pp. 422–425.Google Scholar
  38. 38.
    Ashwell, M.S., Van Tassell, C.P., and Sonstegard, T.S., A Genome Scan to Identify QTL Affecting Economically Important Traits in a US Holstein Population, J. Dairy Sci., 2001, vol. 84, pp. 2535–2542.PubMedGoogle Scholar
  39. 39.
    Klungland, H., Sabry, A., Heringstad, B., et al., QTL Affecting Clinical Mastitis and Somatic Cell Count in Dairy Cattle, Mamm. Genome, 2001, vol. 12, pp. 837–842.PubMedGoogle Scholar
  40. 40.
    Schrooten, C., Bovenhuis, H., Coppieters, W., and van Arendonk, J.A.M., Whole Genome Scan to Detect QTL for Conformation and Functional Traits in Dairy Cattle, J. Dairy Sci., 2000, vol. 83, pp. 795–806.PubMedGoogle Scholar
  41. 41.
    Lindersson, M., Andersson-Eklund, L., de Koning, D.J., et al., Mapping of Serum Amylase-1 and QTL for Milk Production Traits to Cattle Chromosome 4, J. Dairy Sci., 1998, vol. 81, pp. 1454–1461.PubMedGoogle Scholar
  42. 42.
    Bennewitz, J., Reinsch, N., Guiard, V., et al., Multiple QTL Mapping with Cofactors and Application of Alternative Variants of the False Discovery Rate in an Enlarged Granddaughter Design, Genetics, 2004, vol. 168, pp. 1019–1027.CrossRefPubMedGoogle Scholar
  43. 43.
    Schrooten, C., Bink, M.C.A.M., and Bovenhuis, H., Whole Genome Scan to Detect Chromosomal Regions Affecting Multiple Traits in Dairy Cattle, J. Dairy Sci., 2004, vol. 87, pp. 3550–3560.PubMedGoogle Scholar
  44. 44.
    Holmberg, M. and Andersson-Eklund, L., Quantitative Trait Loci Affecting Health Traits in Swedish Dairy Cattle, J. Dairy Sci., 2004, vol. 87, pp. 2653–2659.PubMedGoogle Scholar
  45. 45.
    Ron, M., Kliger, D., Feldmesser, E., et al., Multiple QTL Locus Analysis of Bovine Chromosome 6 in the Israeli Holstein Population by a Daughter Design, Genetics, 2001, vol. 159, pp. 727–735.PubMedGoogle Scholar
  46. 46.
    Wiener, P., Maclean, I., Williams, J.L., and Woolliams, J.A., Testing for the Presence of Previously Identified QTL for Milk Production Traits in New Populations, Anim. Genet., 2000, vol. 31, pp. 385–395.CrossRefPubMedGoogle Scholar
  47. 47.
    Velmala, R.J., Vilkki, H.J., Elo, K.T., et al., A Search for QTL for Milk Production Traits on Chromosome 6 in Finnish Ayrshire Cattle, Anim. Genet., 1999, vol. 30, pp. 136–143.CrossRefPubMedGoogle Scholar
  48. 48.
    Freyer, G., Sorensen, P., Kuhn, C., et al., Search for Pleiotropic QTL on Chromosome BTA6 Affecting Yield Traits of Milk Production, J. Dairy Sci., 2003, vol. 86, pp. 999–1008.PubMedGoogle Scholar
  49. 49.
    Cohen, M., Serrousi, E., Ron, M., et al., Population-Wide Linkage Disequilibrium between a SNP and a QTL Affecting Milk Protein Production on BTA6 in Dairy Cattle, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, pp. 9–12.Google Scholar
  50. 50.
    Olsen, H.G., Lien, S., Svendsen, M., et al., Fine Mapping of Milk Production QTL on BTA6 by Combined Linkage and Linkage Disequilibrium Analysis, J. Dairy Sci., 2004, vol. 87, pp. 690–698.PubMedGoogle Scholar
  51. 51.
    Freyer, G., Kuhn, C., Weikard, R., et al., Multiple QTL on Chromosome Six in Dairy Cattle Affecting Yield and Content Traits, J. Anim. Breed. Genet., 2002, vol. 119, pp. 69–82.CrossRefGoogle Scholar
  52. 52.
    Spelman, R.J., Coppieters, W., Karim, L., et al., QTL Analysis for Five Milk Production Traits on Chromosome Six in the Dutch Holstein-Friesian Population, Genetics, 1996, vol. 144, pp. 1799–1808.PubMedGoogle Scholar
  53. 53.
    Kuhn, C., Freyer, G., Weikard, R., et al., Detection of QTL for Milk Production Traits in Cattle by Application of a Specifically Developed Marker Map of BTA6, Anim. Genet., 1999, vol. 30, pp. 333–340.CrossRefPubMedGoogle Scholar
  54. 54.
    Szyda, J., Liu, Z., Reinhardt, F., and Reents, R., Estimation of QTL Parameters for Milk Production Traits in German Holstein Dairy Cattle Population, J. Dairy Sci., 2005, vol. 88, pp. 356–367.PubMedGoogle Scholar
  55. 55.
    Thomsen, H., Reinsch, N., Xu, C., et al., Comparison of Estimated Breeding Values, Daughter Yield Deviations and Deregressed Proofs within a Whole Genome Scan for QTL, J. Anim. Breed. Genet., 2001, vol. 118, pp. 357–370.CrossRefGoogle Scholar
  56. 56.
    Ashwell, M.S., Rexroad, C.E., Miller, R.H., et al., Detection of Loci Affecting Milk Production and Health Traits in an Elite US Holstein Population Using Microsatellite Markers, Anim. Genet., 1997, vol. 28, pp. 216–222.CrossRefGoogle Scholar
  57. 57.
    Reinsch, N., Thomsen, H., Looft, C., et al., First Results on Somatic Cell Count Loci from the ADR Bovine Mapping Project, Proc. 6th World Congr. on Genetics Applied to Livestock Production, Armidale: Univ. of New England, 1998, vol. 26, pp. 426–428.Google Scholar
  58. 58.
    Boichard, D. and Bishop, M.B., Detection of QTLs Influencing Milk Production and Mastitis Resistance with a Granddaughter Design in Holstein Cattle, Paper Presented at 48th Annual Meeting of the European Association for Animal Production, Vienna, Austria, 1997.Google Scholar
  59. 59.
    Chamberlain, A., McParlan, H., Balasingham, T., et al., Mapping QTL Affecting Milk Composition Traits in Dairy Cattle Using a Complex Pedigree, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, pp. 8–9.Google Scholar
  60. 60.
    Coppieters, W., Riquet, J., Arranz, J.J., et al., QTL with Major Effect on Milk Yield and Composition Maps to Bovine Chromosome 14, Mamm. Genome, 1998, vol. 9, pp. 540–544.CrossRefPubMedGoogle Scholar
  61. 61.
    Farnir, F., Grisart, B., Coppieters, W., et al., Simultaneous Mining of Linkage and Linkage Disequilibrium to Fine Map QTL in Outbred Half-Sib Pedigrees: Revisiting the Location of a QTL with Major Effect on Milk Production on Bovine Chromosome 14, Genetics, 2002, vol. 161, pp. 275–287.PubMedGoogle Scholar
  62. 62.
    Looft, C., Reinsch, N., Karall-Albrecht, C., et al., A Mammary Gland EST Showing Linkage Disequilibrium to a Milk Production QTL on Bovine Chromosome 14, Mamm. Genome, 2001, vol. 12, pp. 646–650.CrossRefPubMedGoogle Scholar
  63. 63.
    Arranz, J.J., Coppieters, W., Berzi, P., et al., A QTL Affecting Milk Yield and Composition Maps to Bovine Chromosome 20: A Confirmation, Anim. Genet., 1998, vol. 29, pp. 107–115.PubMedGoogle Scholar
  64. 64.
    Kim, J.J., Farnir, F., Coppieters, W., et al., Evaluation of a New QTL Fine-Mapping Method Exploiting Linkage Disequilibrium on BTA14 and BTA20 in a Dairy Cattle, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, pp. 21–23.Google Scholar
  65. 65.
    Fisher, P.J. and Spelman, R.J., Verification of Selective DNA Pooling Methodology Through Identification and Estimation of the DGAT1 Effect, Anim. Genet., 2004, vol. 35, pp. 201–205.CrossRefPubMedGoogle Scholar
  66. 66.
    Elo, K.T., Vilkki, J., de Koning, D.J., et al., A QTL for Live Weight Maps to Bovine Chromosome 23, Mamm. Genome, 1999, vol. 10, pp. 831–835.CrossRefPubMedGoogle Scholar
  67. 67.
    Van Tassell, C.P., Sonstegard, T.S., and Ashwell, M.S., Mapping QTL Affecting Dairy Conformation to Chromosome 27 in Two Holstein Grandsire Families, J. Dairy Sci., 2004, vol. 87, pp. 450–457.PubMedGoogle Scholar
  68. 68.
    Vilkki, H.J., de Koning, D.J., Elo, K.T., et al., Multiple Marker Mapping of QTL of Finnish Dairy Cattle by Regression, J. Dairy Sci., 1997, vol. 80, pp. 198–204.PubMedGoogle Scholar
  69. 69.
    Hayes, B. and Goddard, M.E., The Distribution of the Effects of Genes Affecting QTL in Livestock, Genet. Sel. Evol., 2001, vol. 33, pp. 209–229.CrossRefPubMedGoogle Scholar
  70. 70.
    Orr, H.A., The Population Genetics of Adaptation: The Distribution of Factors Fixed during Adaptive Evolution, Evoluton, 1998, vol. 52, pp. 935–949.Google Scholar
  71. 71.
    Weller, J.I., Golik, M., Seroussl, E., et al., Population-Wide Analysis of a QTL Affecting Milk—Fat Production in Israeli Holstein Population, J. Dairy Sci., 2003, vol. 86, pp. 2219–2227.PubMedGoogle Scholar
  72. 72.
    Schrooten, C. and Bovenhuis, H., Detection of Pleiotropic Effects of QTL in Outbred Populations Using Regression Analysis, J. Dairy Sci., 2002, vol. 85, pp. 3503–3513.PubMedGoogle Scholar
  73. 73.
    Lipkin, E., Grosman, G., Tchourzyna, E., et al., QTL Affecting Milk Protein Percent Also Affect Milk Yield and Protein Yield, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, pp. 55–58.Google Scholar
  74. 74.
    Hurst, L.D., Pal, C., and Lercher, M.J., The Evolutionary Dynamics of Eukaryotic Gene Order, Nat. Rev. Genet., 2004, vol. 5, pp. 299–310.CrossRefPubMedGoogle Scholar
  75. 75.
    Cohen, M., Reichenstein, M., Everts-van der Wind, A., et al., Cloning and Characterization of FAM13A1—A Gene near a Milk Protein QTL on BTA6: Evidence for Population-Wide Linkage Disequilibrium in Israeli Holsteins, Genomics, 2004, vol. 84, pp. 374–383.PubMedGoogle Scholar
  76. 76.
    Olsen, H.G., Lien, S., Gautier, M., et al., Mapping of a Milk Production QTL to a 420-kb Region on Bovine Chromosome 6, Genetics, 2005, vol. 169, pp. 275–283.PubMedGoogle Scholar
  77. 77.
    Kneeland, J., Li, C., Basarab, J., et al., Identification and Fine Mapping of QTL for Growth Traits on Bovine Chromosomes 2, 6, 14, 19, 21, and 23 within One Commercial Line of Bos taurus, J. Anim. Sci., 2004, vol. 82, pp. 3405–3414.PubMedGoogle Scholar
  78. 78.
    Prinzenberg, E.-M., Weimann, C., Brandt, H., et al., Polymorphism of the Bovine CSN1S1 Promoter: Linkage Mapping, Intragenic Haplotypes, and Effects on Milk Production Traits, J. Dairy Sci., 2003, vol. 86, pp. 2696–2705.PubMedGoogle Scholar
  79. 79.
    Grisart, B., Farnir, F., Karim, L., et al., Genetic and Functional Confirmation of the Causality of the DGAT1 K232A Quantitative Trait Nucleotide in Affecting Milk Yield and Composition, Pros. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 2398–2403.Google Scholar
  80. 80.
    Kuhn, C., Thaller, G., Winter, A., et al., Evidence for Multiple Alleles at the DGAT1 Locus Better Explains a Quantitative Trait Locus with Major Effect on Milk Fat Content in Cattle, Genetics, 2004, vol. 167, pp. 1873–1881.CrossRefPubMedGoogle Scholar
  81. 81.
    Bennewitz, J., Reinach, N., Paul, S., et al., The DGAT1 K232A Mutation Is Not Solely Responsible for the Milk Production QTL on the Bovine Chromosome 14, J. Dairy Sci., 2004, vol. 87, pp. 431–442.PubMedGoogle Scholar
  82. 82.
    Cases, S., Stone, S.J., Zhou, P., et al., Cloning of DGAT2, a Second Mammalian Diacylglycerol Acyltransferase, and Related Family Members, J. Biol. Chem., 2001, vol. 276, pp. 38 870–38 876.CrossRefGoogle Scholar
  83. 83.
    Moore, S.S., Li, C., Basarab, J., et al., Fine Mapping of QTL and Assessment of Positional Candidate Genes for Backfat on Bovine Chromosome 14 in a Commercial Line of Bos taurus, J. Anim. Sci., 2003, vol. 81, pp. 1919–1925.PubMedGoogle Scholar
  84. 84.
    Winter, A., Alzinger, A., and Frict, R., Assessment of the Gene Content of the Chromosomal Regions Flanking Bovine DGAT1, Genomics, 2004, vol. 83, pp. 172–180.CrossRefPubMedGoogle Scholar
  85. 85.
    Pong-Wong, R., Villanueva, B., and Woolliams, J.A., Comparision of Direct and Marker-Assisted Selection with Optimized Contributions, Proc. 7th World Congr. on Genetics Applied to Livestock Production, Montpellier, France, 2002, communication no. 22–17.Google Scholar
  86. 86.
    Schwerin, M., Czernek-Schafer, D., Goldammer, T., et al., Application of Disease Genes—Mining for Functional Candidate Genes for Mastitis Resistance in Cattle, Genet. Sel. Evol., 2003, vol. 35, pp. S19–S34.PubMedGoogle Scholar
  87. 87.
    Vignal, A., Milan, D., SanCristobal, M., and Eggen, A., A Review on SNP and Other Types of Molecular Markers and Their Use in Animal Genetics, Genet. Sel. Evol., 2002, vol. 34, pp. 275–305.CrossRefPubMedGoogle Scholar
  88. 88.
    Werner, F.A.O., Durstewitz, G., Habermann, F.A., et al., Detection and Characterization of SNPs Useful for Identity Control and Parentage Testing in Major European Dairy Breeds, Anim. Genet., 2004, vol. 35, pp. 44–49.PubMedGoogle Scholar
  89. 89.
    Ihara, N., Takasuga, A., Mizoshita, K., et al., A Comprehensive Genetic Map of the Cattle Genome Based on 3802 Microsatellites, Genome Res., 2004, vol. 14, pp. 1987–1998.CrossRefPubMedGoogle Scholar
  90. 90.
    Everts-van der Wind, A., Kata, S.R., Band, M.R., et al., A 1463-Gene Cattle-Human Comparative Map with Anchor Points Defined by Human Genome Sequence Coordinates, Genome Res., 2004, vol. 14, pp. 1424–1437.CrossRefPubMedGoogle Scholar
  91. 91.
    Andersson, L. and Georges, M., Domestic Animal Genomics: Deciphering the Genetics of Complex Traits, Nature, 2004, vol. 5, pp. 202–212.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. G. Smaragdov
    • 1
  1. 1.All-Russia Research Institute of Genetics and Breeding of Farm AnimalsRussian Academy of Agricultural SciencesSt. PetersburgRussia

Personalised recommendations